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Abstract: Knee osteoarthritis (KOA) is a degenerative joint condition that affects millions globally,
especially older adults. Timely and accurate diagnosis is essential to slow disease progression. This paper
presents a deep learning-based system for automated KOA detection using X-ray images, graded according
to the Kellgren and Lawrence (KL) scale. Four convolutional neural networks—ResNet-34, VGG-19,
DenseNet-121, and DenseNet-161—are fine-tuned through transfer learning and combined using an ensemble
strategy. To model the ordered nature of KOA severity, Conditional Ordinal Regression (CORN) is employed.
The system integrates Explainable Al (XAl) using Eigen-CAM visualizations to highlight diagnostic regions
in the X-ray images. Evaluation on the Osteoarthritis Initiative dataset shows state-of-the-art results, with 98%
accuracy and a Quadratic Weighted Kappa (QWK) score of 0.99. The final model is deployed via a Streamlit
web application, offering an accessible interface for real-time diagnosis. The approach provides a reliable and
interpretable tool for assisting radiologists in KOA assessment.

Index Terms - Knee Osteoarthritis, Deep Learning, Kellgren-Lawrence Grading, Explainable Al.

I.INTRODUCTION

Knee osteoarthritis (KOA) is a leading cause of disability worldwide, particularly among the elderly
population. It is a progressive and irreversible joint disorder characterized by the degradation of articular
cartilage, osteophyte formation, and narrowing of joint space. This condition impairs daily movement, causes
chronic pain, and reduces quality of life. Early and accurate diagnosis of KOA is essential to initiate timely
treatment and reduce long-term complications. Currently, KOA severity is assessed using radiographic
imaging, most commonly through the Kellgren and Lawrence (KL) grading scale, which classifies the
condition into five grades from 0 (normal) to 4 (severe).However, manual interpretation of X-ray images can
be subjective and time-consuming, often leading to inter-observer variability. As patient loads increase,
especially in resource-constrained settings, there is a pressing need for reliable, automated tools that can
support radiologists and orthopedic specialists in evaluating KOA.

In recent years, deep learning—particularly convolutional neural networks (CNNs)—has emerged as a
powerful tool for image classification in medical applications. Its ability to learn hierarchical features directly
from pixel data makes it particularly suited for radiographic image analysis. Several studies have
demonstrated the potential of CNNs for diagnosing KOA, yet many of these models struggle to account for
the ordinal nature of the KL grading system. Treating it as a simple multi-class classification problem
ignores the clinical relevance of grade progression.To address this limitation, we propose a deep learning-
based KOA detection framework that leverages Conditional Ordinal Regression (CORN) to model the
inherent order in KOA grades. We utilize four pre-trained CNN architectures—ResNet-34, VGG-19,
DenseNet-121, and DenseNet-161—and integrate their outputs using an ensemble approach for enhanced
accuracy and robustness.
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Additionally, to improve the explainability and transparency of the predictions, we integrate Explainable
Al (XAIl) methods using Eigen-CAM. These class activation maps visually highlight the specific regions of
the X-ray image that influenced the model’s decision, enabling clinicians to interpret and verify the AI’s
reasoning.To support real-world deployment, a lightweight and intuitive Streamlit web application was
developed. This tool allows clinicians to upload an X-ray image, receive an automated KL grade prediction,
and view the model’s attention heatmap in real time.

This paper presents the full development pipeline of this Al-powered KOA diagnostic system, evaluates its
performance against existing methods, and highlights its potential role as a clinically assistive tool in
orthopedic practice. The field of automated knee osteoarthritis (KOA) detection has evolved significantly over
the last decade, transitioning from classical image processing to advanced deep learning-based methods. A
growing body of research has sought to develop systems that improve the accuracy, reliability, and speed of
KOA diagnosis using radiographic imaging.

I1.LITERATURE REVIEW

A. Traditional Approaches

Earlier attempts at KOA classification relied heavily on hand-crafted features. Gornale et al. (2016) employed
Gabor filters and histogram-based texture features with SVM classifiers. While this approach achieved
moderate success in classifying normal and severe cases, it struggled with mid-grade differentiation due to
subtle structural differences.

Another study by Anifah et al. (2013) used a combination of edge detection and morphological analysis to
estimate joint space width. However, such traditional techniques were sensitive to noise, lighting variations,
and X-ray quality, which often resulted in inconsistent performance across diverse datasets.

B. Deep Learning-Based KOA Classification

The advent of convolutional neural networks (CNNs) dramatically improved feature extraction in medical
imaging. Tiulpin et al. (2018) developed a deep Siamese network to grade KOA severity using bilateral knee
views. They reported a QWK score of 0.85, showing that deep networks could match radiologist-level
performance in controlled settings.

Chen et al. (2019) implemented a pipeline combining YOLO for knee localization and VGG-16 for KL grade
prediction. While they achieved an accuracy of 69.7%, the system suffered from high variability in predicting
Grades 1 and 2, primarily due to treating the grading task as a flat multi-class classification problem.

Yong et al. (2021) advanced the field by integrating ordinal regression into DenseNet-161. Their CORAL-
based model achieved a QWK of 0.86, demonstrating the importance of preserving label order during training.

C. Ordinal Classification in KOA Detection

Traditional classification methods treat all classes as equally distinct, which is not optimal for KOA grading,
where Grade 3 is closer to Grade 2 than to Grade 0. This motivated the use of ordinal regression approaches,
where models are trained to consider the relative ordering of labels.

Shi et al. (2021) proposed the CORN (Conditional Ordinal Regression for Neural Networks) method,
which breaks ordinal prediction into a sequence of dependent binary classification tasks. CORN outperformed
CORAL and Softmax-based methods in several medical grading tasks, making it well-suited for this study.

D. Explainable Al (XAl) in Medical Imaging

Despite growing model accuracy, clinical adoption is hindered by the “black-box” nature of deep learning.
Recent advances in Explainable Al (XAl) have addressed this limitation. Techniques such as Grad-CAM,
Score-CAM, and Eigen-CAM highlight regions in the input image that influenced the model’s decision.
Chaves et al. (2021) demonstrated the use of Grad-CAM for identifying key radiographic features in
musculoskeletal diseases. However, Grad-CAM’s reliance on gradients makes it unstable across architectures.
Eigen-CAM, a more recent method, resolves this by leveraging principal component analysis (PCA) on
feature maps, offering cleaner, gradient-free attention heatmaps.

By integrating Eigen-CAM, our model offers clinicians an intuitive visual explanation of its decision-making
process, thus enhancing transparency and interpretability.
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E. Real-World Deployment and Accessibility

While several studies report strong experimental results, few offer deployable systems. Real-time KOA
detection apps are scarce in clinical workflows. Our approach bridges this gap through a lightweight Streamlit
application, enabling clinicians to upload X-rays, receive KOA grade predictions, and visualize attention
maps in real time.

This combination of accuracy, interpretability, and accessibility is not yet commonly found in literature,
making our work a practical advancement in the field.

F. Summary of Gaps Addressed

(Gap in Literature |How This Study Addresses It |
lignoring ordinal structure of KOA grades  |Uses CORN for ordinal classification |
Lack of interpretability in deep models |Integrates Eigen-CAM for Explainable Al |
Poor performance on mid-grades (e.g., Grade|[Ensemble of four CNNs improves generalization and
2) robustness

INo clinician-facing deployment IReal-time Streamlit app for interactive diagnosis |
IH1. METHODOLOGY

The methodology adopted in this study encompasses several sequential stages, including dataset preparation,
image preprocessing, model development, ordinal classification using CORN, ensemble learning,
explainability integration, and application deployment. Each component of this pipeline has been designed to
improve diagnostic accuracy, handle data imbalance, and ensure clinical interpretability.

The dataset used in this research is sourced from the publicly available Osteoarthritis Initiative (OAl),
which provides a large collection of standardized bilateral posteroanterior knee X-ray images. For this study,
a subset of 9786 images was selected, each labeled with a Kellgren and Lawrence (KL) grade, representing
KOA severity on a scale from 0 (no disease) to 4 (severe disease). To ensure fair model evaluation, the dataset
was split into 70% training, 10% validation, and 20% test sets using stratified sampling, maintaining a
consistent distribution of classes across all splits.

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4

:

Figure 1. Different Levels of Severity grading for Knee Osteoarthritis

Image preprocessing is an essential step in preparing the X-rays for input into deep learning models. All
images were resized to 224x224 pixels to match the input specifications of commonly used convolutional
neural networks (CNNSs). Since the X-rays are grayscale, they were converted to a three-channel format by
replicating the single channel, allowing compatibility with pretrained models trained on RGB images. To
increase the diversity of the training data and reduce overfitting, various data augmentation technigues were
applied, including horizontal flipping, brightness and contrast variation, random rotation, and affine
transformations. These transformations simulate real-world variabilities in image capture and enhance the
model’s generalization capacity—particularly for underrepresented KL grades such as 1 and 4.

The backbone of the proposed system consists of four well-established CNN architectures: ResNet-34, VGG-
19, DenseNet-121, and DenseNet-161. Each of these models was initialized with pretrained ImageNet
weights and subsequently fine-tuned on the KOA dataset. The standard fully connected classification layers
in these models were removed and replaced with a customized ordinal regression head. Rather than treating
KL grading as a standard multi-class classification problem, this study adopts a more clinically appropriate
ordinal regression approach.

To capture the sequential nature of KOA progression, we employed Conditional Ordinal Regression for
Neural Networks (CORN). In this method, the KL grading task is decomposed into four binary classification
problems: for a given image, the model predicts whether the grade is greater than 0, greater than 1, greater
than 2, and greater than 3. This structure ensures that the model learns the inherent order among grades,
reducing the likelihood of large misclassification gaps (e.g., predicting Grade 1 as Grade 4). During inference,
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the four binary outputs are thresholded and summed to yield the final grade. This formulation not only
improves performance but also reflects the progressive nature of joint degeneration in KOA.

To enhance robustness and mitigate the individual weaknesses of any single model, we constructed an
ensemble learning framework. Each of the four base models outputs a four-element CORN vector,
corresponding to the binary ordinal predictions. These vectors are concatenated into a single 16-dimensional
feature vector, which is then passed through a fully connected layer. The output of this layer is another set of
four CORN logits, from which the final grade prediction is obtained. By leveraging the diversity of CNN
architectures and their complementary feature representations, this ensemble significantly improves both
accuracy and consistency across grades.

Model training was conducted using the Adam optimizer with an initial learning rate of 0.0001. To refine
the learning process, a StepLR scheduler was used to reduce the learning rate after every five epochs. The
model was trained for 100 epochs (25 for the ensemble stage), with early stopping applied based on validation
loss and Quadratic Weighted Kappa (QWK) score to prevent overfitting. Gradient clipping was also applied
to ensure stable convergence, particularly in deeper networks like DenseNet-161.

One of the most critical aspects of deploying Al in healthcare is explainability. To make our model’s
decisions transparent to clinicians, we incorporated Eigen-CAM, a post-hoc explainable Al (XAl) technique.
Eigen-CAM works by computing the principal components of the final convolutional layer’s activations,
producing heatmaps that reveal the regions the model focused on while predicting the KL grade. These
heatmaps were visually overlaid on the original X-ray images to enable radiologists to verify whether the
model’s attention aligns with clinically significant features, such as joint space narrowing, sclerosis, or
osteophyte formation.

To translate this research into a usable tool, we developed a web-based application using Streamlit, a
lightweight Python framework for interactive user interfaces. The application allows clinicians to upload knee
X-ray images, obtain real-time KL grade predictions, and view corresponding Eigen-CAM visualizations.
This interface ensures that the system is not only technically accurate but also practically deployable in real-
world medical environments, bridging the gap between machine learning research and clinical diagnostics.
In summary, this methodology emphasizes a carefully curated pipeline that combines deep learning, ordinal
classification, explainability, and human-centered design. By integrating these components, the proposed
system delivers not only high-performance metrics but also actionable insights and usability for healthcare
practitioners.

IV.IMPLEMENTATION

The proposed deep learning framework for KOA detection and grading was implemented using the Python
programming language with the PyTorch deep learning framework. All experiments, including model
training, validation, testing, and ensemble integration, were carried out in a cloud-based environment using
Google Colab Pro, which provided access to a Tesla T4 GPU (16 GB VRAM). This platform offered
sufficient computational resources to handle large image datasets, conduct multi-model training, and support
the final ensemble architecture.
The primary advantage of using Google Colab lies in its accessibility and built-in support for GPU
acceleration, which significantly reduced the training time for deep CNNs. Each model was trained
independently and sequentially, with the heaviest network—DenseNet-161—requiring approximately 75
minutes for 100 epochs on the T4 GPU. Lighter architectures such as ResNet-34 and DenseNet-121 were
trained more efficiently, averaging 40 to 50 minutes each. The final ensemble layer was trained separately for
an additional 25 epochs.
All image preprocessing steps, including resizing, normalization, and data augmentation, were handled using
the Torchvision and OpenCV libraries. The images were transformed into tensors and normalized using
mean and standard deviation values consistent with ImageNet preprocessing. These transformations were
applied dynamically using PyTorch's DatalL.oader class, which was configured with optimized parameters for
performance, including multi-threaded data loading (num_workers=2) and pinned memory
(pin_memory=True).
To enable ordinal classification, the implementation utilized the coral-pytorch library, which supports the
CORN (Conditional Ordinal Regression for Neural Networks) loss function. The CORN layer was integrated
into the model's architecture by replacing the standard classification head with a custom regression head that
outputs four logits corresponding to binary comparisons (Grade > 0, > 1, > 2, > 3). The loss function was
calculated using binary cross-entropy averaged across all four outputs.
The optimization strategy involved using the Adam optimizer with a learning rate of 0.0001 and a step decay
schedule. Training stability was further ensured through gradient clipping to prevent exploding gradients,
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especially in deeper networks. To minimize overfitting, early stopping was used based on validation QWK
scores. Dropout was also employed in the final ensemble layer to reduce variance.

During training, all logs, metrics, and visualizations were monitored and plotted using Matplotlib and
Seaborn, enabling real-time assessment of training and validation performance. Once the best models were
identified through validation QWK and F1-scores, their weights were saved for inference.

Finally, the trained model was integrated into a lightweight Streamlit web application, allowing real-time
interaction and prediction with uploaded X-ray images. The app was structured to handle image input, perform
model inference, and generate Eigen-CAM heatmaps using the activation maps from the final convolutional
layer. These components were modularized into separate Python scripts for model loading, preprocessing,
and visualization, ensuring a clean and maintainable codebase.

The entire pipeline was tested end-to-end within Google Colab, with all dependencies version-locked using
requirements.txt to facilitate reproducibility. The implementation demonstrates that advanced Al models for
medical imaging can be trained, tested, and deployed efficiently using freely available tools and infrastructure.

IV. RESULTS AND DISCUSSION

The proposed model was rigorously evaluated on the held-out test set using multiple performance metrics,
including accuracy, precision, recall, F1-score, Mean Squared Error (MSE), and Quadratic Weighted Kappa
(QWK). These metrics are particularly important in clinical contexts where both the correctness and
consistency of ordinal predictions are critical. The model achieved an overall classification accuracy of 98%,
with a QWK score of 0.99, indicating an exceptionally high level of agreement between predicted and true
KL grades. The ensemble model outperformed all individual base models, especially in correctly identifying
borderline grades such as Grade 1 and Grade 4, which are traditionally difficult due to visual overlap and
limited training samples.

The use of CORN ordinal regression proved instrumental in preserving the natural order of KL grades.
Unlike conventional softmax classifiers, which often misclassify Grade 1 as Grade 3 or higher, the CORN-
based ensemble demonstrated a tendency to misclassify only adjacent grades, which aligns more closely with
clinical reality. The Mean Squared Error was notably reduced, and the model’s predictions showed lower
variance across test samples, contributing to a more reliable diagnostic output.

To interpret the model's predictions, Eigen-CAM heatmaps were generated during inference. These
heatmaps visualized the model’s attention, typically highlighting joint space narrowing, osteophyte formation,
and bone sclerosis—features clinically relevant in KOA grading. In Figure 1 (screenshot from the Streamlit
app), the uploaded knee X-ray is shown with the corresponding heatmap overlay. The model's focus is
distinctly centered on the medial compartment of the knee, an area commonly evaluated by radiologists for
KOA assessment.

Knee OA Detector
PP —— Knee OA Detector

001400% pi;

Uploaded Image Grad-CAM Visualization

»

Prediction Confidence by Class

a

Doubtful

Figure 2. Streamlit web application for Knee OA Detection Figure 3.Streamlit web application showing
Detection results.
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The Streamlit-based deployment of the model plays a critical role in practical usability. As seen in Figure
2, the application features a simple interface where users can upload an X-ray image through a drag-and-drop
uploader. Once the image is uploaded, the app preprocesses the input and runs it through the trained ensemble
model. Within seconds, the system returns the predicted KL grade along with a visual explanation via the
Eigen-CAM heatmap. This allows clinicians to not only obtain a numerical result but also see why the model
made its decision.

Furthermore, the application displays class-wise probability scores for each KL grade, helping users
understand the model's confidence distribution. As illustrated in Figure 3, these probabilities are plotted as a
horizontal bar chart, showing a dominant peak for the predicted class but also reflecting neighboring grade
confidence. For example, in one case, the model predicted Grade 2 with 87% probability, while still showing
a minor likelihood for Grade 1 (8%) and Grade 3 (5%), indicating a well-calibrated confidence range.

The final prediction section (Figure 4) summarizes all results for the clinician, including the predicted KL
grade, attention map, and class probability distribution. The overall user experience was reported to be
responsive, interpretable, and informative—factors essential for real-world adoption in clinical settings.
These results highlight not only the technical robustness of the model but also the importance of
explainability and usability in medical Al. The integration of high-performance metrics, visual
interpretability through CAMs, and real-time deployment via Streamlit presents a complete solution that
aligns with the expectations of modern diagnostic support systems.
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