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Abstract: Adverse Drug Reactions (ADRs) resulting 

from drug-drug interactions are a major healthcare 

concern. While Graph Neural Networks (GNNs) 

effectively model these interactions, their one-

dimensional processing limits complex feature 

extraction. This research introduces a novel extension 

by integrating a two-dimensional Convolutional 

Neural Network (CNN2D) to enhance ADR 

prediction. By converting drug interaction data into 2D 

matrices, CNN2D captures intricate spatial 

relationships, complementing the GNN’s graph-based 

insights. This hybrid model achieves a superior 

prediction accuracy of 99.87%, significantly 

outperforming traditional methods like KNN and 

Decision Trees. The extension showcases the power of 

deep learning in advancing drug safety evaluation. 

Index terms - Adverse Drug Reactions, Drug-Drug 

Interactions, Graph Neural Networks, Convolutional 

Neural Networks, Self-Supervised Learning, SMILES 

Representation, Deep Learning, Side Effect 

Prediction, Drug Safety, TF-IDF Vectorization. 

1. INTRODUCTION 

Adverse Drug Reactions (ADRs) are harmful or 

unpleasant responses resulting from the use of 

medications, often requiring medical intervention, 

alteration in dosage, or complete withdrawal of the 

drug. These reactions pose a serious threat to public 

health systems globally, contributing to increased 

mortality, prolonged hospital stays, and a significant 

rise in healthcare costs. Many ADRs are not identified 

during clinical trials and only become evident once the 

drug has reached the broader market, making early 

detection and prediction essential. 

The occurrence of ADRs is influenced by several 

factors, including sex, geographic location, and 

healthcare quality. For instance, studies suggest that 

women are more susceptible to ADRs due to 
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pharmacokinetic and pharmacodynamic differences, 

along with higher drug dosage per body weight. 

Furthermore, disparities in access to healthcare and 

varying medical standards across countries can affect 

ADR reporting and management. Research shows that 

a significant proportion of ADRs are preventable—

about 71.6% in developed countries and 59.6% in 

developing nations. Mortality rates due to ADRs 

remain consistent across regions, further emphasizing 

the urgent need for effective prediction mechanisms. 

To address these challenges, this study explores a deep 

learning-based approach using Graph Neural 

Networks (GNNs) and Self-Supervised Learning to 

predict drug-drug interactions and their associated 

adverse effects. By leveraging structured 

representations of drugs and their interactions, the 

model aims to improve the accuracy of ADR detection 

before drugs reach patients, ultimately enhancing drug 

safety and saving lives. 

2. LITERATURE SURVEY 

2.1 SSF-DDI: a deep learning method utilizing drug 

sequence and substructure features for drug–drug 

interaction prediction: 

https://bmcbioinformatics.biomedcentral.com/articles

/10.1186/s12859-024-05654-

4#:~:text=In%20this%20paper,%20we%20propose%

20a  

ABSTRACT: Context  Because combination 

treatment frequently involves drug–drug interactions 

(DDI), it is critical to recognise and anticipate any 

DDI.  Although several artificial intelligence 

techniques are capable of predicting and identifying 

possible DDI, they frequently ignore drug molecule 

sequence information and do not fully account for the 

role that molecular substructures play in DDI.  

Findings  To solve these problems, we presented a 

unique sequence and substructure feature-based DDI 

prediction model (SSF-DDI) in this study.  In order to 

provide better information for DDI prediction and to 

enable a more thorough and accurate depiction of drug 

molecules, our model combines structural and drug 

sequence data from the drug molecule graph.  In 

conclusion  Experiments and case studies have shown 

that SSF-DDI performs noticeably better than the most 

advanced DDI prediction models in a variety of real 

datasets and environments.  When compared to state-

of-the-art techniques, SSF-DDI outperforms them in 

predicting DDI using unknown medicines, improving 

accuracy by 5.67%. 

2.2 Modular Multi-Source Prediction of Drug Side-

Effects With DruGNN: 

https://pubmed.ncbi.nlm.nih.gov/35576419/#:~:text=

Predicting%20the%20probability%20of%20side-

effects,%20before  

ABSTRACT: Drug development procedures, care 

system expenses, and public health are all significantly 

impacted by drug side effects, or DSEs.  To lessen this 

influence, especially on drug research, it is essential to 

predict the likelihood of adverse effects before they 

materialise.  Before going through clinical trials, 

candidate molecules might be tested, saving 

participants' time, money, and health.  Complex 

biological processes involving a wide range of entities, 

including drug structures and protein-protein 

interactions, are what cause medication side effects.  

Data from many sources must be integrated in order to 

forecast their occurrence.  The relational information 

between various things, including genes and 

pharmacological compounds, is expressively 

represented in this study by integrating such 

heterogeneous data into a graph dataset.  One 

significant innovation for pharmacological side-effect 

predictions is the dataset's relational structure.  With 

extremely encouraging findings, we use Graph Neural 

Networks (GNNs) to forecast DSEs on our dataset.  

Deep learning models such as GNNs have been used 

for a wide range of biological applications because 

they can interpret graph-structured data with little 

information loss.  The benefits of leveraging 

relationships between data entities are confirmed by 
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our experimental results, which also point to intriguing 

future advancements in this area.  The experimentation 

also demonstrates the significance of particular data 

subsets in identifying drug-side effect connections. 

2.3 Explainable Drug Repurposing Approach 

From Biased Random Walks: 

https://ieeexplore.ieee.org/document/9831014  

ABSTRACT: The goal of the very busy field of drug 

repurposing research is to discover new applications 

for medications that have already been created for 

various therapeutic reasons.  Even with the growth of 

techniques, success is still only partially achieved, and 

each strategy has unique benefits.  We offer a unique 

approach in this composite environment that relies on 

strong drug-gene-disease correlation data sets and is 

centred on an effective mathematical process based on 

gene similarity scores and biassed random walks.  The 

Markov chain that underlies the random walk process 

further reveals the recommendation mechanism, 

making it possible to understand how the results are 

proposed.  Comparing our method to the state-of-the-

art in medication repurposing techniques, performance 

assessment and the analysis of a case study on 

rheumatoid arthritis demonstrate that it is accurate in 

offering practical recommendations and is 

computationally efficient. 

2.4 A Novel Drug-Drug Indicator Dataset and 

Ensemble Stacking Model for Detection and 

Classification of Drug-Drug Interaction 

Indicators: 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=10250422  

ABSTRACT: Thirty percent of unexpected clinically 

dangerous pharmaceutical events are caused by drug-

drug interactions (DDI), which is a serious public 

health concern.  Informatics-based research for DDI 

signal detection has advanced during the last ten years.  

The goal of this work is to develop an ensemble 

stacking machine learning (ML) method that can 

reliably forecast new DDI danger indicators.  One of 

the best sources of pharmacological data, DrugBank, 

supports the stacking ensemble machine learning 

architecture for predicting the signals of drug-drug 

interactions.  We make a sizable dataset containing 

drug-related data, such as drug names, kinds, and other 

elements of drug indicators, freely accessible to the 

scientific community.  Data preparation, label 

encoding and one hot encoding for categorical 

variables, balancing by random oversampling, and 

model prediction using an ensemble stacking 

technique are all included in the suggested 

methodology.  The suggested ensemble method 

classifies the drug indication classes using Gaussian 

Naive Bayes (GNB), Adaboost, and the Gradient 

Boosting (GB) classifier.  The experimental findings 

show that the proposed method performs more 

accurately and efficiently than conventional machine 

learning techniques.  The maximum accuracy of 

99.0% was achieved by the stacking model.  

According to the test, the suggested model 

outperforms conventional techniques in identifying 

signs of medication interactions. 

2.5 NNDSVD-GRMF: A Graph Dual 

Regularization Matrix Factorization Method Using 

Non-Negative Initialization for Predicting Drug-

Target Interactions: 

https://ieeexplore.ieee.org/document/9858885  

ABSTRACT: The process of designing and 

developing novel drugs can be greatly accelerated by 

accurately predicting drug-target interactions (DTIs).  

DTIs have recently been predicted using a variety of 

matrix factorisation techniques.  Their convergence 

and performance cannot be guaranteed, though, as the 

majority of them rely on iterative and heuristic 

approaches.  Graph dual regularisation non-negative 

matrix factorisation (GDNMF) and non-negative 

double singular value decomposition (NNDSVD) are 

the foundations of our new algorithm, NNDSVD-

GRMF, which takes into account both the initialisation 

stage of the non-negative matrix factorisation and the 
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structural information of the data and features in order 

to accurately predict DTIs.  The expansion of the 

NNDSVD-GRMF (NNDSVD-WGRMF) is also 

suggested in order to increase the algorithm's 

versatility.  Our approaches outperform existing state-

of-the-art methods, according to extensive 

experimental data.  Nine of the ten medications that 

were anticipated to interact with the androgen receptor 

out of the case studies have been verified, and nine of 

the ten target proteins that were projected to be 

targeted by the medication nicotine bitartrate have also 

been validated. 

3. METHODOLOGY 

i) Proposed Work: 

The proposed system enhances Adverse Drug 

Reaction (ADR) prediction by integrating a two-

dimensional Convolutional Neural Network (CNN2D) 

with a Graph Neural Network (GNN) framework. 

While the GNN captures complex drug-drug 

relationships using graph structures, the CNN2D 

extension transforms drug feature data into a two-

dimensional format to extract intricate spatial patterns. 

This hybrid model significantly boosts predictive 

accuracy by leveraging CNN2D's advanced feature 

extraction capabilities, achieving an impressive 

accuracy of 99.87%. The system offers a more robust 

and intelligent approach to detecting potential side 

effects, improving drug safety and aiding healthcare 

professionals in informed decision-making. 

ii) System Architecture: 

The architecture of the proposed system begins with 

data collection and preprocessing. The dataset, 

sourced from DrugBank, includes drug IDs, SMILES 

strings (which represent chemical structures), and 

known side effects. These SMILES strings are 

converted into numerical vectors to serve as input for 

model training. TF-IDF vectorization is applied to 

extract meaningful features from textual data while 

reducing noise from common terms. The processed 

data is then split into training and testing sets. Initially, 

a Graph Neural Network (GNN) is used to model the 

complex relationships between drugs, where each drug 

is represented as a node and their interactions as edges. 

This graph-based model effectively captures 

dependency patterns among drugs. 

To further enhance the prediction capabilities, a two-

dimensional Convolutional Neural Network (CNN2D) 

is introduced as an extension. The CNN2D processes 

the same data in a 2D matrix form, enabling the model 

to extract spatial features that are not visible through 

traditional graph structures. This deep learning model 

learns hidden patterns and interactions more 

accurately, ultimately leading to higher prediction 

precision. A Flask-based user interface allows 

administrators to upload test data and visualize 

predictions clearly. The combination of GNN for 

structural learning and CNN2D for advanced pattern 

recognition forms a powerful hybrid system, capable 

of accurately identifying potential adverse drug 

reactions before they manifest clinically. 

 

Fig.1. Proposed Architecture 

iii) MODULES: 

a. Data Loading 

● Imports the DrugBank dataset containing 

drug IDs, SMILES strings, and side effect 

data. 

● Prepares the data for further processing. 

b. Visualization 

● Displays graphs showing side effect IDs vs. 

their frequency. 
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● Helps understand the distribution of side 

effects visually. 

c. Data Pre-processing 

● Converts SMILES strings and other drug 

information into numerical vectors. 

● Ensures the data is ready for model training. 

d. TF-IDF Vectorization 

● Applies TF-IDF to convert text data into 

numerical values. 

● Highlights important terms and reduces the 

influence of common words. 

  Splitting Data into Train & Test 

● Divides the dataset into training and testing 

parts. 

● Allows model performance to be evaluated 

effectively. 

e. Model Generation 

● Implements KNN, Decision Tree, GNN, and 

CNN2D algorithms. 

● Compares accuracy and effectiveness of each 

model. 

f. Admin Login 

● Provides a login system for admin users. 

● Enables access to upload and monitor 

prediction tasks. 

g. Drug Side Effect Prediction 

● Allows uploading of new drug interaction 

data. 

● System predicts potential side effects for the 

uploaded data. 

h. Prediction 

● Displays the final predicted side effects. 

● Helps medical professionals make informed 

decisions. 

iv) ALGORITHMS: 

a) K-Nearest Neighbors (KNN) 

● Classifies data points based on the 

majority class of their nearest 

neighbors. 

● Simple and easy to implement, used 

as a baseline model. 

● Accuracy achieved: 91%. 

b) Decision Tree 

● Creates a tree-like model to make 

decisions based on drug features. 

● Offers high interpretability and 

logical flow of predictions. 

● Accuracy achieved: 95%. 

c) Graph Neural Network (GNN) 

(Proposed) 

● Represents drugs as nodes and 

interactions as edges in a graph. 

● Learns complex relationships using 

graph-based deep learning. 

● Processes SMILES strings as vectors 

for accurate ADR predictions. 

● Accuracy achieved: 97.69%. 

d) Convolutional Neural Network 2D 

(CNN2D) (Extension) 

● Processes drug data in a 2D format to 

extract spatial features. 
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● Enhances pattern recognition beyond 

what GNN alone can achieve. 

● Boosts accuracy and model 

generalization. 

● Accuracy achieved: 99.87%. 

4. EXPERIMENTAL RESULTS 

The experimental results were obtained using the 

DrugBank dataset, which includes drug IDs, SMILES 

strings, and their associated side effects. Various 

models were tested and compared based on prediction 

accuracy. Traditional algorithms like K-Nearest 

Neighbors (KNN) and Decision Tree achieved 

accuracies of 91% and 95% respectively. The 

proposed Graph Neural Network (GNN), which 

effectively captures complex drug-drug relationships, 

improved the accuracy to 97.69%. To enhance 

performance further, a CNN2D model was integrated 

as an extension, which extracted spatial features and 

delivered the highest accuracy of 99.87%. These 

results highlight the superiority of the GNN-CNN2D 

approach in predicting adverse drug reactions. 

Accuracy: The ability of a test to differentiate 

between healthy and sick instances is a measure of its 

accuracy. Find the proportion of analysed cases with 

true positives and true negatives to get a sense of the 

test's accuracy. Based on the calculations: 

Accuracy = TP + TN /(TP + TN + FP + FN) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝑇𝑃)

𝑇
 

Precision: The accuracy rate of a classification or 

number of positive cases is known as precision. 

Accuracy is determined by applying the following 

formula: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

𝑃𝑟 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall: The recall of a model is a measure of its 

capacity to identify all occurrences of a relevant 

machine learning class. A model's ability to detect 

class instances is shown by the ratio of correctly 

predicted positive observations to the total number of 

positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁 + 𝑇𝑃)
 

mAP: One ranking quality statistic is Mean Average 

Precision (MAP).  It takes into account the quantity of 

pertinent suggestions and where they are on the list.  

The arithmetic mean of the Average Precision (AP) at 

K for each user or query is used to compute MAP at 

K.  

 

F1-Score: A high F1 score indicates that a machine 

learning model is accurate. Improving model accuracy 

by integrating recall and precision. How often a model 

gets a dataset prediction right is measured by the 

accuracy statistic.. 

𝐹1 = 2 ⋅
(𝑅𝑒𝑐𝑎𝑙𝑙 ⋅𝑃𝑟 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 +𝑃𝑟 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛)
 

 

  

 
Fig.4. dataset upload 
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Fig.5. results 

 

Fig.6.accuracy table results 

 

Fig.6. graphical representation 

  

5. CONCLUSION 

The study's conclusion emphasises the urgent need for 

a dependable and effective technique to forecast 

adverse drug reactions (ADRs), which are a serious 

public health concern that result from medication-drug 

interactions.  Due to their heavy reliance on post-

marketing information and inability to discover 

uncommon interactions prior to medication release, 

current detection techniques frequently fall short.  Our 

suggested approach shows a strong capacity to 

correctly forecast possible ADRs by combining Self-

Supervised Learning with a Graph Neural Network 

(GNN).  By capturing the intricate connections that 

might result in negative responses, the GNN greatly 

improves the prediction process by efficiently 

modelling the links between medications.  The GNN 

surpasses conventional algorithms with an astounding 

accuracy of 97.69%, demonstrating its efficacy in 

identifying dangerous medication combinations.  

Furthermore, performance is further improved by 

utilising cutting-edge techniques, such as a two-

dimensional Convolutional Neural Network 

(CNN2D), which achieves an exceptional accuracy of 

99.87%.  This work highlights the possibility of using 

state-of-the-art machine learning approaches to 

enhance patient outcomes and medication safety, 

which will ultimately lead to better informed 

healthcare practices and a decrease in the frequency of 

adverse drug reactions. 

6. FUTURE SCOPE 

In order to improve forecast accuracy and model 

resilience, this project's future scope will investigate 

the integration of cutting-edge methodologies 

including ensemble learning, reinforcement learning, 

and transfer learning.  The system's capacity to 

recognise intricate drug-drug interactions may also be 

enhanced by adding more varied datasets and applying 

unsupervised learning techniques.  Examining the use 

of explainable AI approaches will also be essential for 

revealing how the model makes decisions and building 

mutual respect and understanding among medical 

practitioners. 
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