www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éb INTERNATIONAL JOURNAL OF CREATIVE
/ RESEARCH THOUGHTS (1JCRT)
@a <" An International Open Access, Peer-reviewed, Refereed Journal

Transport And Application Layer Parameters In
An LSTM-Based Jamming Detection And
Forecasting Model For Wi-Fi Internet Of Things
(lot) Systems

Kankipati Varalakshmi!, SESHA GIRI RAO THALLURI 2

#1M.tech Specialization:- Computer Science and EngineeringDepartment of CSE. Bonam Venkata Chalamayya

Engineering College,Odalarevu , Konaseema Dist -533217 (A.P), varalakshmikankipatil234@gmail.com

#2Associate Professor,Bonam Venkata Chalamayya Engineering College,Odalarevu Allavaram Mandal, Konaseema

Dist - 533217 (A.P)

Abstract: Adverse Drug Reactions (ADRS) resulting
from drug-drug interactions are a major healthcare
concern. While Graph Neural Networks (GNNs)
effectively model these interactions, their one-
dimensional processing limits complex feature
extraction. This research introduces a novel extension
by integrating a two-dimensional Convolutional
Neural Network (CNN2D) to enhance ADR
prediction. By converting drug interaction data into 2D
matrices, CNN2D captures intricate  spatial
relationships, complementing the GNN’s graph-based
insights. This hybrid model achieves a superior
prediction accuracy of 99.87%, significantly
outperforming traditional methods like KNN and
Decision Trees. The extension showcases the power of

deep learning in advancing drug safety evaluation.

Index terms - Adverse Drug Reactions, Drug-Drug
Interactions, Graph Neural Networks, Convolutional
Neural Networks, Self-Supervised Learning, SMILES

Representation, Deep Learning, . Side  Effect
Prediction, Drug Safety, TF-IDF Vectorization.

1. INTRODUCTION

Adverse Drug Reactions (ADRs) are harmful or
unpleasant responses resulting from the use of
medications, often requiring medical intervention,
alteration in dosage, or complete withdrawal of the
drug. These reactions pose a serious threat to public
health systems globally, contributing to increased
mortality, prolonged hospital stays, and a significant
rise in healthcare costs. Many ADRs are not identified
during clinical trials and only become evident once the
drug has reached the broader market, making early

detection and prediction essential.

The occurrence of ADRs is influenced by several
factors, including sex, geographic location, and
healthcare quality. For instance, studies suggest that

women are more susceptible to ADRs due to
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pharmacokinetic and pharmacodynamic differences,
along with higher drug dosage per body weight.
Furthermore, disparities in access to healthcare and
varying medical standards across countries can affect
ADR reporting and management. Research shows that
a significant proportion of ADRs are preventable—
about 71.6% in developed countries and 59.6% in
developing nations. Mortality rates due to ADRs
remain consistent across regions, further emphasizing

the urgent need for effective prediction mechanisms.

To address these challenges, this study explores a deep
learning-based approach using Graph Neural
Networks (GNNs) and Self-Supervised Learning to
predict drug-drug interactions and their associated
adverse  effects. By leveraging  structured
representations of drugs and their interactions, the
model aims to improve the accuracy of ADR detection
before drugs reach patients, ultimately enhancing drug

safety and saving lives.

2. LITERATURE SURVEY

2.1 SSF-DDI: a deep learning method utilizing drug
sequence and substructure features for drug—drug

interaction prediction:

https://bmcbioinformatics.biomedcentral.com/articles
/10.1186/s12859-024-05654-

44 ~:text=1n%20this%20paper,%20we%20propose%
20a

ABSTRACT: Context Because combination
treatment frequently involves drug—drug interactions
(DDI), it is critical to recognise and anticipate any
DDI. Although several artificial intelligence
techniques are capable of predicting and identifying
possible DDI, they frequently ignore drug molecule
sequence information and do not fully account for the
role that molecular substructures play in DDI.
Findings To solve these problems, we presented a
unigque sequence and substructure feature-based DDI
prediction model (SSF-DDI) in this study. In order to

provide better information for DDI prediction and to

enable a more thorough and accurate depiction of drug
molecules, our model combines structural and drug
sequence data from the drug molecule graph. In
conclusion Experiments and case studies have shown
that SSF-DDI performs noticeably better than the most
advanced DDI prediction models in a variety of real
datasets and environments. When compared to state-
of-the-art techniques, SSF-DDI outperforms them in
predicting DDI using unknown medicines, improving

accuracy by 5.67%.

2.2 Modular Multi-Source Prediction of Drug Side-
Effects With DruGNN:

https://pubmed.ncbi.nim.nih.gov/35576419/#:.~:text=
Predicting%20the%20probability%200f%20side-
effects,%20before

ABSTRACT: Drug development procedures, care
system expenses, and public health are all significantly
impacted by drug side effects, or DSEs. To lessen this
influence, especially on drug research, it is essential to
predict the likelihood of adverse effects before they
materialise. Before going through clinical trials,
candidate molecules might be tested, saving
participants' time, money, and health.  Complex
biological processes involving a wide range of entities,
including drug- structures: and protein-protein
interactions, are what cause medication side effects.
Data from many sources must be integrated in order to
forecast their occurrence. The relational information
between various things, including genes and
pharmacological compounds, is  expressively
represented in this study by integrating such
heterogeneous data into a graph dataset. One
significant innovation for pharmacological side-effect
predictions is the dataset's relational structure. With
extremely encouraging findings, we use Graph Neural
Networks (GNNs) to forecast DSEs on our dataset.
Deep learning models such as GNNs have been used
for a wide range of biological applications because
they can interpret graph-structured data with little
information loss. The benefits of leveraging

relationships between data entities are confirmed by
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our experimental results, which also point to intriguing
future advancements in this area. The experimentation
also demonstrates the significance of particular data

subsets in identifying drug-side effect connections.

2.3 Explainable Drug Repurposing Approach
From Biased Random Walks:

https://ieeexplore.ieee.org/document/9831014

ABSTRACT: The goal of the very busy field of drug
repurposing research is to discover new applications
for medications that have already been created for
various therapeutic reasons. Even with the growth of
techniques, success is still only partially achieved, and
each strategy has unique benefits. We offer a unique
approach in this composite environment that relies on
strong drug-gene-disease correlation data sets and is
centred on an effective mathematical process based on
gene similarity scores and biassed random walks. The
Markov chain that underlies the random walk process
further reveals the recommendation mechanism,
making it possible to understand how the results are
proposed. Comparing our method to the state-of-the-
art in medication repurposing techniques, performance
assessment and the analysis of a case study on
rheumatoid arthritis demonstrate that it is accurate in
offering  practical recommendations and s

computationally efficient.

2.4 A Novel Drug-Drug Indicator Dataset and
Ensemble Stacking Model for Detection and
Interaction

Classification of Drug-Drug

Indicators:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu
mber=10250422

ABSTRACT: Thirty percent of unexpected clinically
dangerous pharmaceutical events are caused by drug-
drug interactions (DDI), which is a serious public
health concern. Informatics-based research for DDI
signal detection has advanced during the last ten years.
The goal of this work is to develop an ensemble

stacking machine learning (ML) method that can

reliably forecast new DDI danger indicators. One of
the best sources of pharmacological data, DrugBank,
supports the stacking ensemble machine learning
architecture for predicting the signals of drug-drug
interactions. We make a sizable dataset containing
drug-related data, such as drug names, kinds, and other
elements of drug indicators, freely accessible to the
scientific community. Data preparation, label
encoding and one hot encoding for categorical
variables, balancing by random oversampling, and
model prediction using an ensemble stacking
technique are all included in the suggested
methodology.  The suggested ensemble method
classifies the drug indication classes using Gaussian
Naive Bayes (GNB), Adaboost, and the Gradient
Boosting (GB) classifier. The experimental findings
show that the proposed method performs more
accurately and efficiently than conventional machine
learning techniques. The maximum accuracy of
99.0% was achieved by the stacking model.
According to the test, the suggested model
outperforms conventional techniques in identifying

signs of medication interactions.

2.5 NNDSVD-GRMEF: A Graph Dual
Regularization Matrix Factorization Method Using
Non-Negative Initialization for Predicting Drug-

Target Interactions:

https://ieeexplore.ieee.org/document/9858885

ABSTRACT: The process of designing and
developing novel drugs can be greatly accelerated by
accurately predicting drug-target interactions (DTIs).
DTlIs have recently been predicted using a variety of
matrix factorisation techniques. Their convergence
and performance cannot be guaranteed, though, as the
majority of them rely on iterative and heuristic
approaches. Graph dual regularisation non-negative
matrix factorisation (GDNMF) and non-negative
double singular value decomposition (NNDSVD) are
the foundations of our new algorithm, NNDSVD-
GRMF, which takes into account both the initialisation

stage of the non-negative matrix factorisation and the
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structural information of the data and features in order
to accurately predict DTIs. The expansion of the
NNDSVD-GRMF (NNDSVD-WGRMF) is also
suggested in order to increase the algorithm's
versatility. Our approaches outperform existing state-
of-the-art methods, according to extensive
experimental data. Nine of the ten medications that
were anticipated to interact with the androgen receptor
out of the case studies have been verified, and nine of
the ten target proteins that were projected to be
targeted by the medication nicotine bitartrate have also

been validated.

3. METHODOLOGY

i) Proposed Work:

The proposed system enhances Adverse Drug
Reaction (ADR) prediction by integrating a two-
dimensional Convolutional Neural Network (CNN2D)
with a Graph Neural Network (GNN) framework.
While the GNN captures complex drug-drug
relationships using graph structures, the CNN2D
extension transforms drug feature data into a two-
dimensional format to extract intricate spatial patterns.
This hybrid model significantly boosts predictive
accuracy by leveraging CNN2D's advanced feature
extraction capabilities, achieving an impressive
accuracy of 99.87%. The system offers a more robust
and intelligent approach to detecting potential side
effects, improving drug safety and aiding healthcare

professionals in informed decision-making.

ii) System Architecture:

The architecture of the proposed system begins with
data collection and preprocessing. The dataset,
sourced from DrugBank, includes drug IDs, SMILES
strings (which represent chemical structures), and
known side effects. These SMILES strings are
converted into numerical vectors to serve as input for
model training. TF-IDF vectorization is applied to
extract meaningful features from textual data while

reducing noise from common terms. The processed

data is then split into training and testing sets. Initially,
a Graph Neural Network (GNN) is used to model the
complex relationships between drugs, where each drug
is represented as a node and their interactions as edges.
This graph-based model effectively captures

dependency patterns among drugs.

To further enhance the prediction capabilities, a two-
dimensional Convolutional Neural Network (CNN2D)
is introduced as an extension. The CNN2D processes
the same data in a 2D matrix form, enabling the model
to extract spatial features that are not visible through
traditional graph structures. This deep learning model
learns hidden patterns and interactions more
accurately, ultimately leading to higher prediction
precision. A Flask-based user interface allows
administrators to upload test data and visualize
predictions clearly. The combination of GNN for
structural learning and CNN2D for advanced pattern
recognition forms a powerful hybrid system, capable
of accurately identifying potential adverse drug

reactions before they manifest clinically.

Dataset

Drug side effect
classification

Existing KNN
Existing DT L Trained models
Propose GNN

Extension CNN2D

Fig.1. Proposed Architecture

iii) MODULES:

a. Data Loading

e Imports the DrugBank dataset containing
drug IDs, SMILES strings, and side effect
data.

e Prepares the data for further processing.

b. Visualization

e Displays graphs showing side effect 1Ds vs.

their frequency.
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e Helps understand the distribution of side

effects visually.

c. Data Pre-processing

e Converts SMILES strings and other drug
information into numerical vectors.

e Ensures the data is ready for model training.

d. TF-IDF Vectorization

e Applies TF-IDF to convert text data into
numerical values.
e Highlights important terms and reduces the

influence of common words.

[J Splitting Data into Train & Test

e Divides the dataset into training and testing
parts.
e Allows model performance to be evaluated

effectively.

e. Model Generation

e Implements KNN, Decision Tree, GNN, and
CNN2D algorithms.

e Compares accuracy and effectiveness of each
model.

f. Admin Login

e Provides a login system for admin users.
e Enables access to upload and monitor

prediction tasks.

g. Drug Side Effect Prediction

e Allows uploading of new drug interaction
data.
e System predicts potential side effects for the

uploaded data.

h. Prediction

e Displays the final predicted side effects.
e Helps medical professionals make informed

decisions.

iv) ALGORITHMS:

a) K-Nearest Neighbors (KNN)

e Classifies data points based on the
majority class of their nearest
neighbors.

e Simple and easy to implement, used
as a baseline model.

e Accuracy achieved: 91%.

b) Decision Tree

e Creates a tree-like model to make
decisions based on drug features.

e Offers high interpretability and
logical flow of predictions.

e Accuracy achieved: 95%.

c) Graph Neural Network (GNN)
(Proposed)

e Represents drugs as nodes and
interactions as edges in a graph.

e Learns complex relationships using
graph-based deep learning.

e Processes SMILES strings as vectors
for accurate ADR predictions.

e Accuracy achieved: 97.69%.

d) Convolutional Neural Network 2D
(CNN2D) (Extension)

e Processes drug data in a 2D format to

extract spatial features.
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e Enhances pattern recognition beyond
what GNN alone can achieve.

e Boosts accuracy and  model

generalization.

e Accuracy achieved: 99.87%.

4. EXPERIMENTAL RESULTS

The experimental results were obtained using the
DrugBank dataset, which includes drug IDs, SMILES
strings, and their associated side effects. Various
models were tested and compared based on prediction
accuracy. Traditional algorithms like K-Nearest
Neighbors (KNN) and Decision Tree achieved
accuracies of 91% and 95% respectively. The
proposed Graph Neural Network (GNN), which
effectively captures complex drug-drug relationships,
improved the accuracy to 97.69%. To enhance
performance further, a CNN2D model was integrated
as an extension, which extracted spatial features and
delivered the highest accuracy of 99.87%. These
results highlight the superiority of the GNN-CNN2D

approach in predicting adverse drug reactions.

Accuracy: The ability of a test to differentiate
between healthy and sick instances is a measure of its
accuracy. Find the proportion of analysed cases with
true positives and true negatives to get a sense of the

test's accuracy. Based on the calculations:
Accuracy = TP + TN /(TP + TN + FP + FN)

(TN +TP)

Accuracy = T

Precision: The accuracy rate of a classification or
number of positive cases is known as precision.
Accuracy is determined by applying the following

formula:

Precision = True positives/ (True positives + False
TP/(TP + FP)

positives)

TP

Pr Pr e cision = (TTFP)

Recall: The recall of a model is a measure of its
capacity to identify all occurrences of a relevant
machine learning class. A model's ability to detect
class instances is shown by the ratio of correctly
predicted positive observations to the total number of

positives.

TP

Recall = m

mMAP: One ranking quality statistic is Mean Average
Precision (MAP). It takes into account the quantity of
pertinent suggestions and where they are on the list.
The arithmetic mean of the Average Precision (AP) at
K for each user or query is used to compute MAP at
K.

1 k=n
mAP = —Z AP,
n

k=1

AP, = the AP_of class k
n = the number of classes

F1-Score: A high F1 score indicates that.a machine
learning model is accurate. Improving model accuracy
by integrating recall and precision. How often a model
gets a dataset prediction right is measured by the
accuracy statistic..

o (Recall -Pr Pr e cision)
~ 7 (Recall +Pr Pr e cision)

Drug Side Effect
Prediction Sereen
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Fig.5. results
Algorithm Name  Accuracy Precision Recall FSCORE
0 Existing KNN  91.560102 91.920962 91.305660 91.323465
1 Existing Decision TRee 95140665 95339149 95618899 95454287
2 Propose GNN 97.698210 97.889953 97.702843 97.722705
3 Extension CNN2D 99.872123 99903101 99888143 99.895292

Fig.6.accuracy table results

All Algorithms Performance Graph

1004

Algorithms
BN Accuracy
801 S FSCORE
N Precision
60 N Recall
40
20
u -

g

Decision Tree
Extension CNN2D
Propose GNN

Fig.6. graphical representation

5. CONCLUSION

The study's conclusion emphasises the urgent need for
a dependable and effective technique to forecast
adverse drug reactions (ADRs), which are a serious
public health concern that result from medication-drug
interactions. Due to their heavy reliance on post-
marketing information and inability to discover
uncommon interactions prior to medication release,
current detection techniques frequently fall short. Our
suggested approach shows a strong capacity to
correctly forecast possible ADRs by combining Self-
Supervised Learning with a Graph Neural Network
(GNN). By capturing the intricate connections that
might result in negative responses, the GNN greatly
improves the prediction process by efficiently
modelling the links between medications. The GNN

surpasses conventional algorithms with an astounding

accuracy of 97.69%, demonstrating its efficacy in
identifying dangerous medication combinations.
Furthermore, performance is further improved by
utilising cutting-edge techniques, such as a two-
dimensional  Convolutional ~ Neural  Network
(CNNZ2D), which achieves an exceptional accuracy of
99.87%. This work highlights the possibility of using
state-of-the-art machine learning approaches to
enhance patient outcomes and medication safety,
which will ultimately lead to better informed
healthcare practices and a decrease in the frequency of

adverse drug reactions.
6. FUTURE SCOPE

In order to improve forecast accuracy and model
resilience, this project's future scope will investigate
the integration of cutting-edge methodologies
including ensemble learning, reinforcement learning,
and transfer learning. The system's capacity to
recognise intricate drug-drug interactions may also be
enhanced by adding more varied datasets and applying
unsupervised learning techniques. Examining the use
of explainable Al approaches will also be essential for
revealing how the model makes decisions.and building
mutual respect and understanding- among  medical

practitioners.
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