

OSTEONET: AUTOMATED DETECTION AND STAGING OF OSTEOARTHRITIS

¹HARI SELVAN M, ²AMIRATHAJ G, ³KRISHNA.G, ⁴MARIA MAHAJAN.T

¹Student, ²Student, ³Student, ⁴Assistant Professor

¹Department of Information Technology,

¹Nehru Arts and Science College, Coimbatore, India.

ABSTRACT:

Osteoarthritis (OA) is a leading cause of disability worldwide, with knee osteoarthritis being one of its most prevalent and debilitating forms. Early detection and accurate staging are critical for effective management and treatment planning. This study introduces OsteoNet, a deep learning-based framework leveraging Convolutional Neural Networks (CNNs) to automate the detection and severity prediction of knee osteoarthritis from radiographic (X-ray) images. The model is trained on annotated datasets, incorporating both binary classification (OA presence) and multi-class grading based on the Kellgren-Lawrence scale. OsteoNet demonstrates high accuracy and robustness in identifying OA and distinguishing between severity levels, offering a reliable tool for clinical decision support. The proposed system aims to reduce diagnostic variability, enhance early screening, and assist healthcare professionals in delivering timely and personalized care.

1. INTRODUCTION:

Osteoarthritis (OA) is a degenerative joint disease and one of the most common causes of disability worldwide, particularly affecting the knee joint. Characterized by the gradual breakdown of cartilage, OA leads to pain, stiffness, and decreased mobility, severely impacting quality of life. Early diagnosis and precise assessment of disease severity are essential for initiating timely treatment and slowing progression. However, traditional diagnosis based on radiographic analysis often suffers from subjectivity and inter-observer variability, especially in staging the condition.

In this study, we propose OsteoNet, a CNN-based framework designed to automate the detection and staging of knee OA from X-ray images. The system aims to classify the presence of OA and predict its severity according to established clinical grading scales, such as the Kellgren-Lawrence (KL) scale. By integrating deep learning with radiographic diagnostics, OsteoNet provides a fast, consistent, and objective approach to knee OA assessment, with potential applications in clinical settings for enhanced decision support.

2. SYSTEM ANALYSIS:

OsteoNet is designed as an end-to-end deep learning system for the automated detection and staging of knee osteoarthritis from X-ray images. The system utilizes Convolutional Neural Networks (CNNs) to extract radiographic features and classify both the presence and severity of OA based on the Kellgren-Lawrence grading scale. It consists of key components including data preprocessing, feature extraction, classification, and result visualization. Input X-ray images are normalized and enhanced before being fed into the CNN

model, which outputs diagnostic predictions along with severity levels. The system emphasizes high accuracy, consistency, and usability, aiming to reduce human error and support clinical decision-making with real-time, interpretable results. Built with Python and deep learning frameworks such as TensorFlow or PyTorch, OsteoNet is scalable, efficient, and adaptable for integration into clinical workflows.

3. EXISTING SYSTEM:

Existing systems for osteoarthritis (OA) detection relied on manual grading of radiographs using the Kellgren-Lawrence (KL) scale, which assesses joint space narrowing, osteophytes, and bone deformities. Semi-automated tools applied image processing techniques like edge detection and feature extraction. Classical machine learning models such as SVMs, KNN, and Decision Trees were used to classify OA severity based on manually extracted features. However, these systems often suffered from subjectivity, limited accuracy, and the need for expert input.

Drawbacks of the Existing System

1. Subjectivity: Manual grading using the KL scale is prone to inter- and intra-observer variability.

2. Limited Accuracy: Traditional models often underperform due to reliance on manually selected features.

3. Labor-Intensive: Feature extraction and diagnosis require expert intervention and domain knowledge.

4. Poor Generalization: Models may not perform well across different datasets or imaging conditions.

5. Low Automation: Many systems require manual preprocessing and lack end-to-end diagnostic flow.

6. Scalability Issues: Traditional systems are not easily adaptable for large-scale or real-time clinical use.

4. PROPOSED SYSTEM:

The Proposed System for OsteoNet: Automated Detection and Staging of Osteoarthritis Prediction Using CNN Models:

The proposed system, OsteoNet, is an end-to-end deep learning framework designed to automate the detection and severity prediction of knee osteoarthritis using Convolutional Neural Networks (CNNs). The system begins with preprocessing of knee X-ray images, including resizing, normalization, and contrast enhancement to improve feature visibility. A pre-trained CNN model such as ResNet, VGG16, or EfficientNet is fine-tuned to extract deep features from the radiographs. These features are then passed through fully connected layers to classify the presence of osteoarthritis and predict its severity based on the Kellgren-Lawrence (KL) grading system (Grades 0–4). The model is trained on labeled datasets (e.g., OAI or MOST), ensuring robustness and generalization. The system also includes a result visualization module that can optionally generate heatmaps to show areas of interest in the image. OsteoNet provides a consistent, scalable, and accurate solution, addressing the limitations of traditional diagnostic methods and assisting clinicians in early and precise OA diagnosis.

Advantages of the Proposed System:

Advantages of the Proposed System (OsteoNet):

1. High Accuracy: CNNs automatically learn complex features, improving detection and grading performance.
2. Consistency: Reduces human error and inter-observer variability in diagnosis.
3. Automation: Provides an end-to-end pipeline from image input to OA staging without manual intervention.
4. Speed: Enables rapid analysis of X-rays, supporting real-time clinical decision-making.
5. Scalability: Can handle large datasets and be deployed in various healthcare environments.
6. Explainability: Optional heatmaps (e.g., Grad-CAM) highlight regions of interest, increasing model transparency.
7. Early Diagnosis: Facilitates timely intervention by detecting subtle OA features often missed manually.

5. Hardware Components:

1. Processor (CPU):
Intel Core i5/i7

2. RAM: 16 GB

3. Hard Disk : 512 GB SSD

6. Software Components:

1. Programming Language:

Python

Widely used in AI/ML and image processing.

Large support community and libraries for deep learning and medical imaging.

2. Framework:

Deep Learning Frameworks:

TensorFlow (with Keras) or PyTorch

Both support CNN development, transfer learning, and visualization tools (e.g., Grad-CAM).

OpenCV (for image preprocessing)

3. Database (Optional, for storing results, patient records, images, etc.):

SQLite (for small-scale or local applications)

PostgreSQL or MySQL (for larger, multi-user systems)

MongoDB (if using a NoSQL approach for storing image metadata or results)

4. Web Technologies (For UI and deployment):

Backend:

Flask or FastAPI (lightweight Python web frameworks for deploying ML models)

Frontend:

HTML, CSS, JavaScript

Bootstrap or ReactJS for interactive UI

METHODOLOGY

a. Data Collection & Preprocessing

For OsteoNet: Automated Detection and Staging of Osteoarthritis Prediction, data is collected from publicly available medical imaging datasets such as the Osteoarthritis Initiative (OAI) and MOST, which contain thousands of labeled knee X-ray images along with clinical information like Kellgren-Lawrence (KL) grades. These images are typically in DICOM or JPG formats and are used to train the deep learning model. During preprocessing, the images are resized to a fixed dimension (e.g., 224x224), normalized to standardize pixel intensity, and enhanced using contrast adjustment or noise reduction techniques. Data augmentation methods such as flipping, rotation, and zooming are applied to increase data diversity and improve model generalization. Finally, labels are encoded, and the dataset is divided into training, validation, and testing sets to support robust and unbiased model development.

b. Machine Learning Models

1. Convolutional Neural Networks (CNNs):

Core architecture used for extracting spatial features from X-ray images for classification.

2. VGG16:

A deep CNN model known for its simplicity and effectiveness in medical image classification tasks.

3. ResNet50:

A residual network that helps in training deeper models by avoiding vanishing gradients, improving accuracy.

4. EfficientNet:

A lightweight and scalable model that balances accuracy and computational efficiency for large-scale image tasks.

5. Transfer Learning:

Pre-trained models on large datasets (like ImageNet) are fine-tuned on knee X-rays to speed up training and boost performance.

c. Model Training and Evaluation

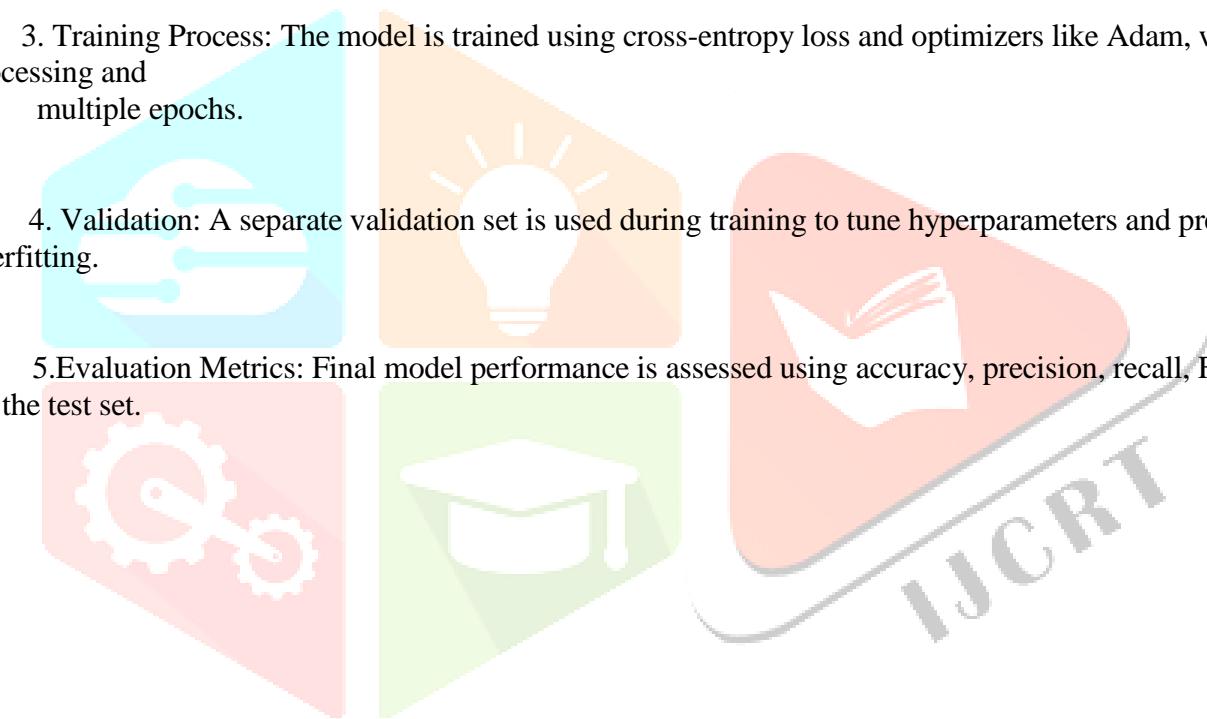
1. Model Selection: CNN architectures like VGG16, ResNet50, or EfficientNet are chosen for training on knee X-ray images.

2. Transfer Learning: Pre-trained weights (e.g., from ImageNet) are fine-tuned to adapt to osteoarthritis detection.

3. Training Process: The model is trained using cross-entropy loss and optimizers like Adam, with batch processing and multiple epochs.

4. Validation: A separate validation set is used during training to tune hyperparameters and prevent overfitting.

5. Evaluation Metrics: Final model performance is assessed using accuracy, precision, recall, F1-matrix on the test set.



7. RESULT AND DISCUSSION

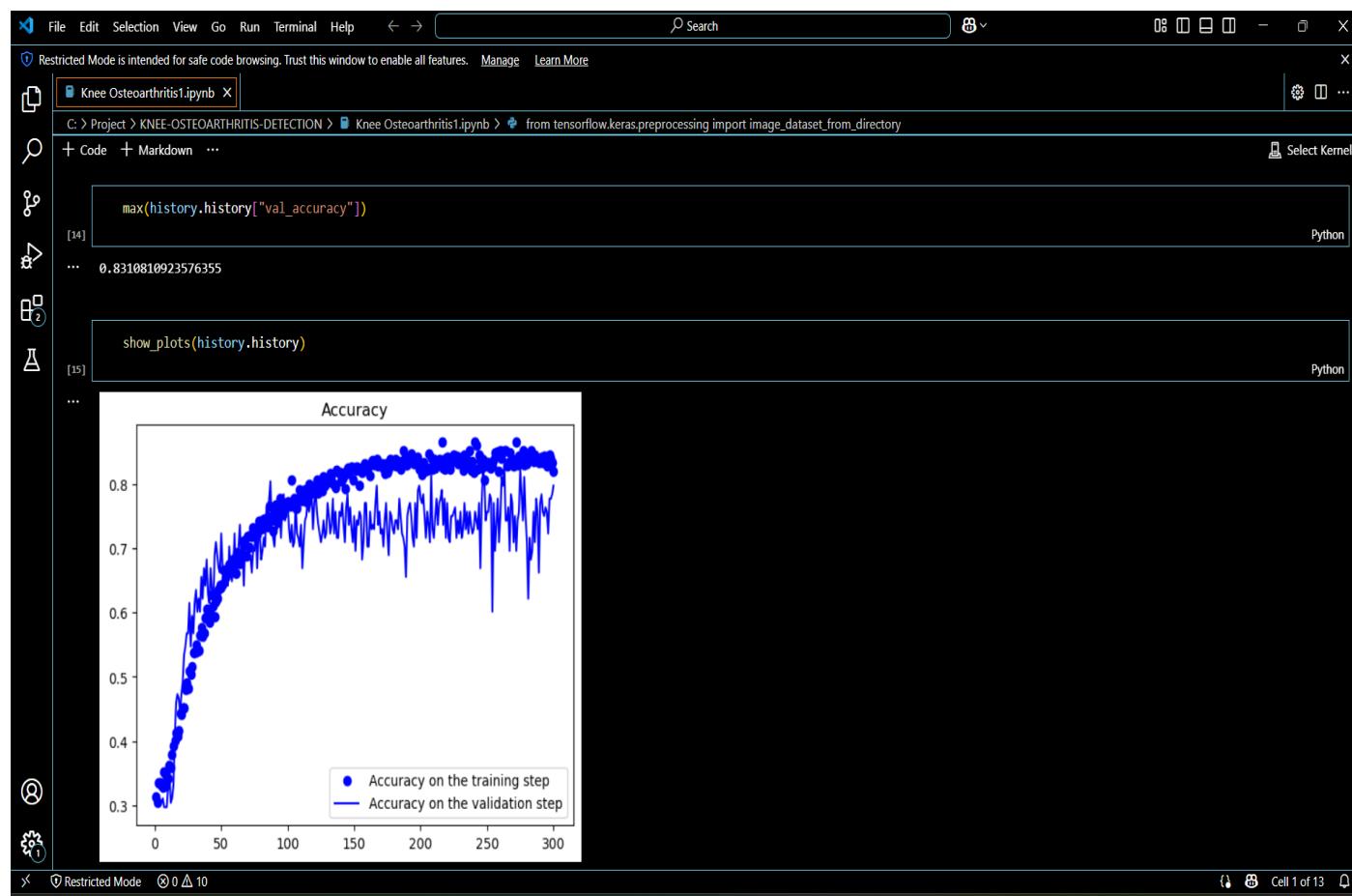


FIG 8.1

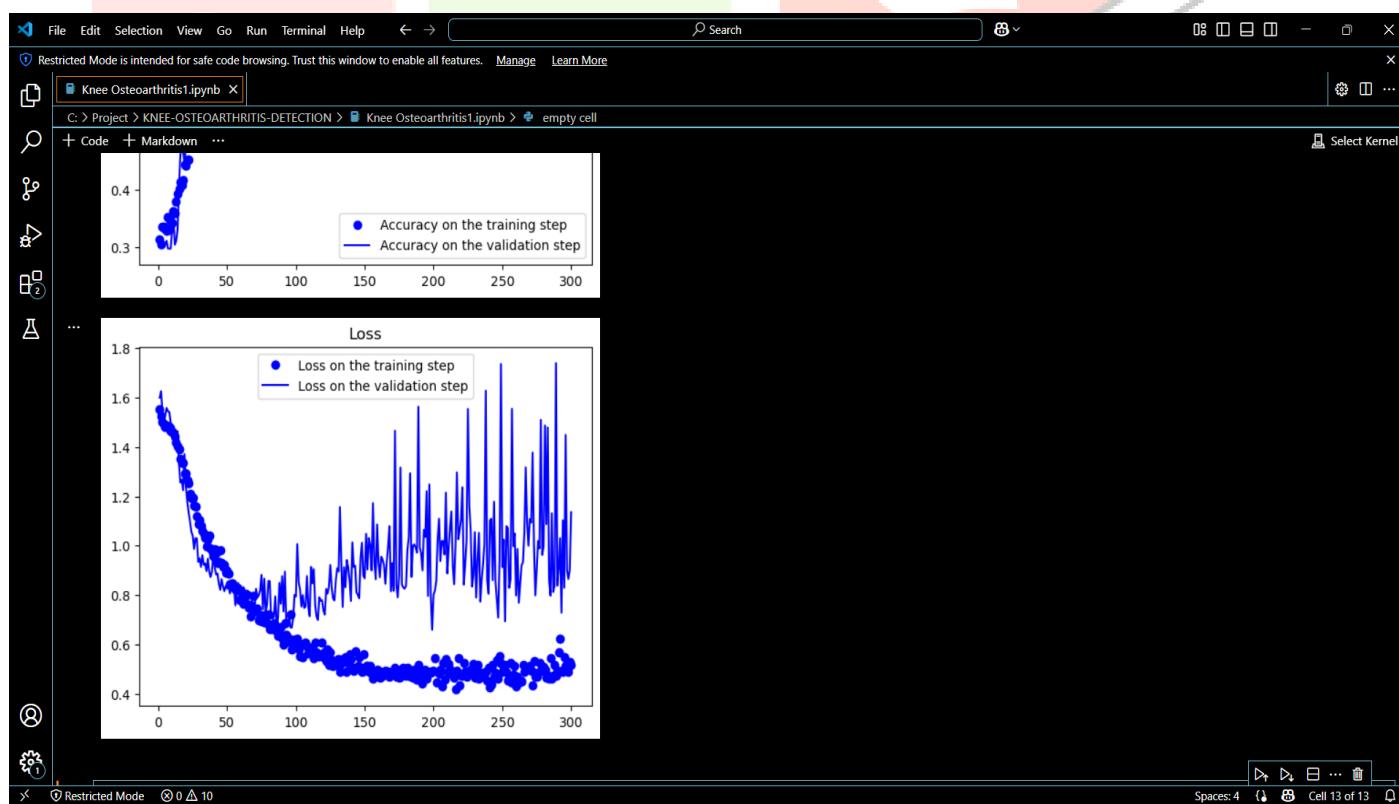


FIG 8.2

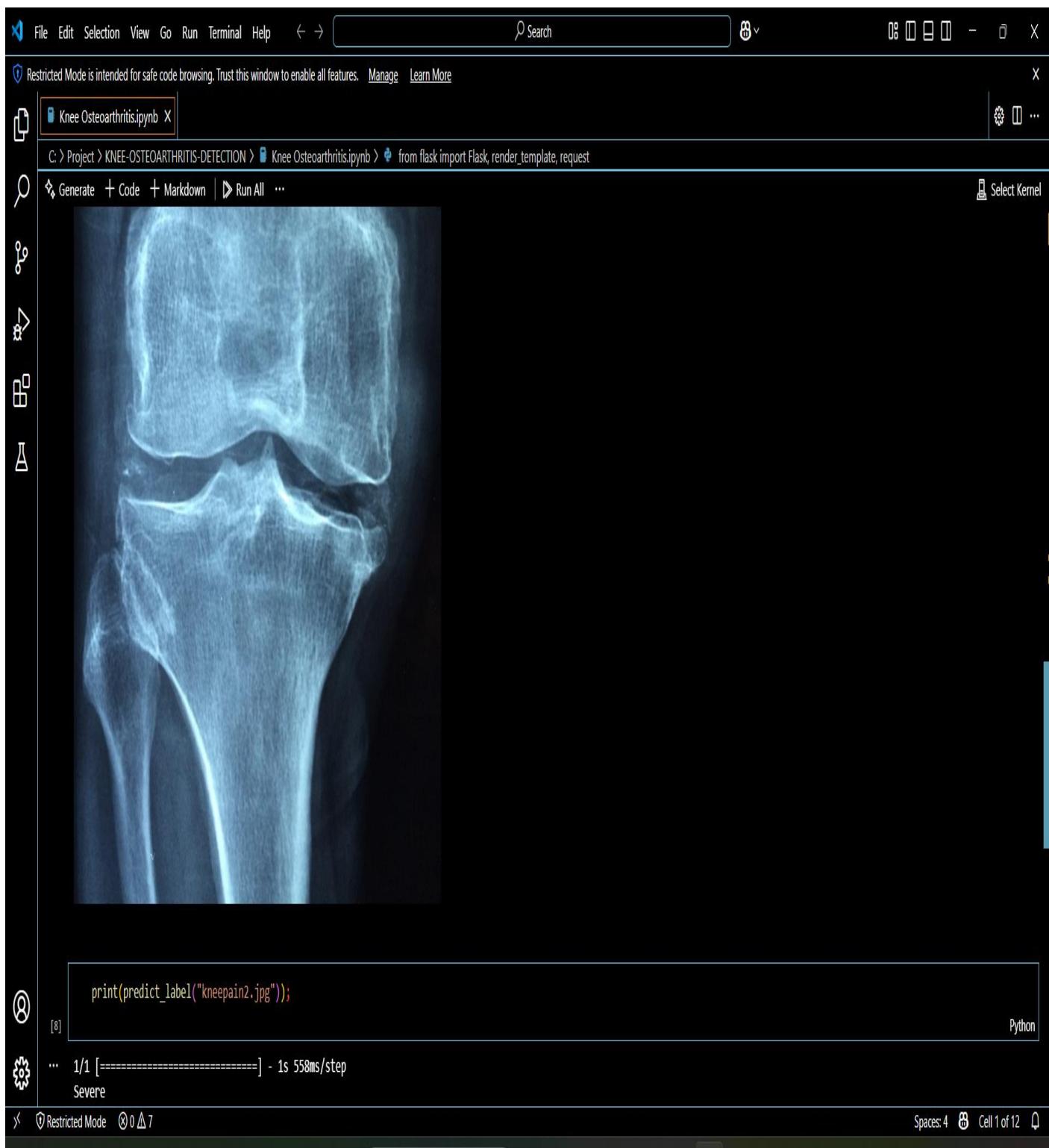


FIG 8.3

CONCLUSION:

In conclusion, OsteoNet: Automated Detection and Staging of Osteoarthritis Prediction presents an effective deep learning-based approach for accurately identifying and classifying knee osteoarthritis using X-ray images. By leveraging powerful CNN models and transfer learning techniques, the system eliminates the subjectivity and limitations of traditional diagnostic methods. It offers a reliable, fast, and scalable solution that can assist healthcare professionals in making early and precise OA diagnoses. With consistent performance across various severity levels based on the Kellgren-Lawrence grading system, OsteoNet demonstrates the potential of AI in enhancing medical imaging analysis and improving clinical decision-making.

10. FUTURE ENHANCEMENTS:

The Future enhancements for OsteoNet could involve developing a mobile or web-based application to enable remote screening and wider accessibility, especially in rural or under-resourced areas. The system could be extended to support 3D imaging modalities like CT or MRI for more comprehensive structural analysis. Incorporating personalized risk prediction by combining imaging with clinical, genetic, and lifestyle data can help anticipate disease progression. Enhancing the model with automatic region of interest (ROI) detection and multi-label classification would allow it to identify other knee-related conditions alongside osteoarthritis. Additionally, adopting federated learning techniques could allow model training across multiple institutions while preserving patient data privacy, leading to better generalization and robustness.

11. REFERENCES:

1. Tiulpin et al. (2018) – Deep learning for automatic knee OA detection using X-rays.
2. Antony et al. (2017) – CNN-based OA severity quantification from knee radiographs.
3. Thomas et al. (2021) – Grading of OA using deep learning on medical images.
4. Chen et al. (2020) – Transfer learning for classifying OA severity levels.
5. Altman et al. (2015) – Overview of the Osteoarthritis Initiative (OAI) dataset.
6. Simonyan & Zisserman (2014) – Introduction of VGGNet for image classification.

