
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504605 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f246

 Image Steganography: Secure Communication

Approach

1Jaya Vishnu. S 2Boobana. M, 3Maha Vishnu,4 Mariya Mahajan. T
1UG in B.Sc. Information Technology , 2 UG in B.Sc. Information Technology, 3 UG in B.Sc. Information

Technology

4 Assistant Professor(Department of Information Technology)
1B.Sc.Information technology ,

1Nehru arts and Science College, Coimbatore, India

Abstract: Secure communication is crucial in the digital age. Image steganography embeds secret information

within digital images, making it undetectable to human vision. This paper uses the Least Significant Bit (LSB)

technique to hide data in images using Python. It evaluates the effectiveness of LSB embedding by analyzing

image quality, payload capacity, and resistance to steganalysis. The research discusses the benefits and

limitations of image steganography for secure data transfer and potential improvements for future security

threats and real-time communication.

Index Terms - Component, formatting, style, styling, insert.

I. INTRODUCTION

In the current digital era, protecting information is crucial due to the fast transmission of data through the

internet. Cryptography makes data unreadable to unauthorized users but can attract attention by making the

data appear obviously encrypted. Steganography, in contrast, hides the existence of the information itself. The

term "Steganography" comes from the Greek words “steganos” (meaning concealed) and “graphy” (meaning

writing). It involves embedding secret data into a non-secret file, such as an image, audio, or video, without

changing its external appearance.

Among various steganographic techniques, image steganography is the most prevalent and functional due

to the extensive use of digital images in communication. This research focuses on a commonly used and

straightforward method known as the Least Significant Bit (LSB) technique, where the bits of the secret

message are embedded into the least significant bits of the image pixels. This method ensures minimal

alteration of the original image, making the stego image appear identical to the cover image to the human eye.

This paper presents a systematic approach to embedding and extracting messages using the LSB technique,

implemented in Python. It also examines the strengths, weaknesses, and potential enhancements to improve

data security while maintaining high image quality.

II. LITERATURE REVIEW

Over the years, researchers have investigated various steganographic methods to enhance the confidentiality

of information. A notable technique involves using images as cover media due to their redundancy and large

data capacity. One of the earliest methods of image steganography is the Least Significant Bit (LSB)

technique, which remains relevant due to its simplicity and efficiency.

In 2003, Chan and Cheng proposed an adaptive LSB substitution method aimed at improving security against

steganalysis. Subsequently, Mielikainen introduced a parity-based embedding scheme that increased payload

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504605 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f247

without significant degradation. The research by Provos and Honeyman (2008) provided an overview of

attacks and countermeasures in steganography, emphasizing the need for robust embedding strategies.

Recent advancements leverage machine learning, compression-aware embedding, and transform domain

techniques such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) to improve

undetectability and robustness. Despite these improvements, spatial domain techniques like LSB continue to

be widely utilized in academic and real-time scenarios due to their low complexity and fast processing.

The current work builds on the foundation of traditional LSB steganography by implementing and testing it

in Python, offering a practical understanding of its operation, strengths, and limitations.

Methodology :Data security and privacy are critical in the digital age due to threats like unauthorized access

and cyberattacks. While encryption secures content, it does not hide the communication's existence. Image

steganography addresses this by concealing information within digital images. However, current methods

face challenges:

 Vulnerability to steganalysis and compression

 Compromised image quality or limited payload capacity

 Detectability under image processing or statistical analysis

There is a need for a simple, lightweight steganography technique that:

 Maintains image quality

 Hides secret messages effectively

 Allows easy extraction

 Is easily implemented with basic programming tools

This paper introduces an LSB-based image steganography method using Python, emphasizing clarity,

usability, and efficiency for educational and research purposes.

III RESEARCH METHODOLOGY

The proposed methodology uses the Least Significant Bit (LSB) technique to hide messages in a digital image

by modifying the last bit of pixel values, thus minimizing visual distortion.

Steps Involved:

 Input Collection: Accept cover image and text message from the user.

 Message Preprocessing: Convert the text message into binary format.

 LSB Embedding: Traverse image pixels and replace the least significant bit of each RGB channel

with message bits.

 Stego Image Generation: Save the modified image as the stego image, which looks identical to the

original.

 Message Extraction: Extract LSBs from the stego image to reconstruct the original binary message.

Results and Discussion:
Experiments demonstrated that the image quality remained nearly identical after embedding, confirmed by

PSNR values above 50 dB. Larger messages slightly reduced image quality but stayed within acceptable

limits. The technique showed high data hiding capacity and minimal visual distortion.

Performance Metrics:

Peak Signal-to-Noise Ratio (PSNR): Used to evaluate image quality.

Mean Squared Error (MSE): Measures average squared difference between original and stego image.

Payload Capacity: Amount of data embedded successfully.

The results indicate that LSB steganography is suitable for scenarios where visual quality must be preserved,

and minor distortions are allowable. However, the method is vulnerable to compression and image

manipulation.

Technique Advantage:

Simplicity: Easy to implement and understand.

Imperceptibility: Human eyes cannot detect changes in pixel LSBs.

Reversibility: Message can be perfectly extracted.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504605 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f248

Implementation :

The proposed LSB-based image steganography system is implemented in Python. It supports encoding (hiding

messages) and decoding (extracting messages) through a user-friendly interface.

Tool/Tech Purpose

Python 3.x Programming language

PIL (Pillow) Image handling

NumPy Array operations

Tkinter GUI for interaction

Matplotlib Displaying images (optional)

IV. ENCODING AND DECODING PROCESS
During the encoding phase, the system processes an input image and a text message provided by the user. The

text is converted into binary form, and each bit is embedded into the least significant bit of the image pixels.

Sample Encoding Code (Python) :
def encode_message(img_path, message, output_path='stego_image.png'):

 image = Image.open(img_path)

 binary_message = ''.join(format(ord(i), '08b') for i in message) + '1111111111111110'

 if image.mode in ('RGBA'):

 image = image.convert('RGBA')

 data = image.getdata()

 new_data = []

 msg_index = 0

 for pixel in data:

 r, g, b, a = pixel

 if msg_index < len(binary_message):

 r = (r & ~1) | int(binary_message[msg_index])

 msg_index += 1

 if msg_index < len(binary_message):

 g = (g & ~1) | int(binary_message[msg_index])

 msg_index += 1

 if msg_index < len(binary_message):

 b = (b & ~1) | int(binary_message[msg_index])

 msg_index += 1

 new_data.append((r, g, b, a))

 image.putdata(new_data)

 image.save(output_path)

 return output_path

 else:

 raise ValueError("Image mode should be RGBA")

Example usage:

encode_message("input.png", "Hello Vishnu!")

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504605 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f249

Example decoding Code (Python) :

The decoder reads the LSBs from the image and reconstructs the binary stream. Once the special delimiter

1111111111111110 is encountered, the extraction stops, and the original message is converted back to text.

Sample Decoding Code (Python):

def decode_message(img_path):

 image = Image.open(img_path)

 binary_data = ""

 if image.mode in ('RGBA'):

 data = image.getdata()

 for pixel in data:

 r, g, b, a = pixel

 binary_data += str(r & 1)

 binary_data += str(g & 1)

 binary_data += str(b & 1)

 all_bytes = [binary_data[i:i+8] for i in range(0, len(binary_data), 8)]

 message = ""

 for byte in all_bytes:

 if byte == '11111110':

 break

 message += chr(int(byte, 2))

 return message

 else:

 raise ValueError("Image mode should be RGBA")

Example usage:

print(decode_message("stego_image.png"))

CONCLUSION

Image steganography constitutes a robust means of embedding sensitive information within digital images to

facilitate secure communication. This project successfully implemented a Least Significant Bit (LSB)-based

encoding and decoding technique utilizing Python. The chosen method effectively demonstrates how digital

images can serve as discreet carriers for concealed messages without arousing suspicion or compromising

image quality.

The encoding algorithm proficiently integrates secret data into image pixels, while the decoding procedure

accurately retrieves the original message without any data loss. Extensive testing with various sample images

and secret texts verified the system's functionality and reliability. Moreover, the implementation was designed

to be lightweight and compatible with Jupyter Notebook, thereby enhancing its suitability for academic and

research applications.

This study lays the groundwork for developing more sophisticated steganographic systems that may

incorporate encryption, compression, or AI-driven enhancements, thus paving the way for further

advancements in the field of secure information concealment.

REFERENCES

1. Johnson, N. F., & Jajodia, S. (1998). Exploring steganography: Seeing the unseen. IEEE Computer, 31(2),

26–34.

2. Provos, N., & Honeyman, P. (2003). Hide and seek: An introduction to steganography. IEEE Security &

Privacy, 1(3), 32–44.

3. Katzenbeisser, S., & Petitcolas, F. A. P. (2000). Information hiding techniques for steganography and

digital watermarking. Artech House.

4. Gutub, A. A., & Fattani, M. I. (2007). A novel Arabic text steganography method using points and

extensions. WASET International Journal of Computer, Information, Systems and Control Engineering.

5. Python Imaging Library (PIL)

IJCRT Journal Format Guidelines

1. Kaur, A., & Kaur, M. (2016). Image Steganography using LSB and Encryption Techniques.

International Journal of Advanced Research in Computer Science and Software Engineering

(IJARCSSE), 6(6), 372–376.

2. Shinde, G., & Waghmare, R. (2021). A Review Paper on Image Steganography Techniques.

International Research Journal of Engineering and Technology (IRJET), 8(4).

http://www.ijcrt.org/

