www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éh INTERNATIONAL JOURNAL OF CREATIVE

RESEARCH THOUGHTS (1JCRT)
o

An International Open Access, Peer-reviewed, Refereed Journal

Image Steganography: Secure Communication
Approach

Ljaya Vishnu. S 2Boobana. M, 3Maha Vishnu,4 Mariya Mahajan. T

UG in B.Sc. Information Technology , 2 UG in B.Sc. Information Technology, ® UG in B.Sc. Information
Technology
4 Assistant Professor(Department of Information Technology)
!B.Sc.Information technology ,
INehru arts and Science College, Coimbatore, India

Abstract: Secure communication is crucial in the digital age. Image steganography embeds secret information
within digital images, making it undetectable to human vision. This paper uses the Least Significant Bit (LSB)
technique to hide data in images using Python. It evaluates the effectiveness of LSB embedding by analyzing
image quality, payload capacity, and resistance to steganalysis. The research discusses the benefits and
limitations of image steganography for secure data transfer and potential improvements for future security
threats and real-time communication.

Index Terms - Component, formatting, style, styling, insert.

I. INTRODUCTION

In the current digital era, protecting information is crucial due to the fast transmission of data through the
internet. Cryptography makes data unreadable to unauthorized users but can attract attention by making the
data appear obviously encrypted. Steganography, in contrast, hides the existence of the information itself. The
term "Steganography" comes from the Greek words “steganos” (meaning concealed) and “graphy” (meaning
writing). It involves embedding secret data into a non-secret file, such as an image, audio, or video, without
changing its external appearance.

Among various steganographic techniques, image steganography is the most prevalent and functional due
to the extensive use of digital images in communication. This research focuses on a commonly used and
straightforward method known as the Least Significant Bit (LSB) technique, where the bits of the secret
message are embedded into the least significant bits of the image pixels. This method ensures minimal
alteration of the original image, making the stego image appear identical to the cover image to the human eye.
This paper presents a systematic approach to embedding and extracting messages using the LSB technique,
implemented in Python. It also examines the strengths, weaknesses, and potential enhancements to improve
data security while maintaining high image quality.

Il. LITERATURE REVIEW

Over the years, researchers have investigated various steganographic methods to enhance the confidentiality
of information. A notable technique involves using images as cover media due to their redundancy and large
data capacity. One of the earliest methods of image steganography is the Least Significant Bit (LSB)
technique, which remains relevant due to its simplicity and efficiency.

In 2003, Chan and Cheng proposed an adaptive LSB substitution method aimed at improving security against
steganalysis. Subsequently, Mielikainen introduced a parity-based embedding scheme that increased payload

IJCRT2504605 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f246

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

without significant degradation. The research by Provos and Honeyman (2008) provided an overview of
attacks and countermeasures in steganography, emphasizing the need for robust embedding strategies.
Recent advancements leverage machine learning, compression-aware embedding, and transform domain
techniques such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) to improve
undetectability and robustness. Despite these improvements, spatial domain techniques like LSB continue to
be widely utilized in academic and real-time scenarios due to their low complexity and fast processing.
The current work builds on the foundation of traditional LSB steganography by implementing and testing it
in Python, offering a practical understanding of its operation, strengths, and limitations.
Methodology :Data security and privacy are critical in the digital age due to threats like unauthorized access
and cyberattacks. While encryption secures content, it does not hide the communication's existence. Image
steganography addresses this by concealing information within digital images. However, current methods
face challenges:

e Vulnerability to steganalysis and compression

e Compromised image quality or limited payload capacity

e Detectability under image processing or statistical analysis
There is a need for a simple, lightweight steganography technique that:

e Maintains image quality

e Hides secret messages effectively

e Allows easy extraction

e s easily implemented with basic programming tools
This paper introduces an LSB-based image steganography method using Python, emphasizing clarity,
usability, and efficiency for educational and research purposes.
111 RESEARCH METHODOLOGY

The proposed methodology uses the Least Significant Bit (LSB) technique to hide messages in a digital image
by modifying the last bit of pixel values, thus minimizing visual distortion.
Steps Involved:

e Input Collection: Accept cover image and text message from the user.

e Message Preprocessing: Convert the text message into binary format.

e LSB Embedding: Traverse image pixels and replace the least significant bit of each RGB channel

with message bits.
e Stego Image Generation: Save the modified image as the stego image, which looks identical to the
original.

e Message Extraction: Extract LSBs from the stego image to reconstruct the original binary message.
Results and Discussion:
Experiments demonstrated that the image quality remained nearly identical after embedding, confirmed by
PSNR values above 50 dB. Larger messages slightly reduced image quality but stayed within acceptable
limits. The technique showed high data hiding capacity and minimal visual distortion.
Performance Metrics:
Peak Signal-to-Noise Ratio (PSNR): Used to evaluate image quality.
Mean Squared Error (MSE): Measures average squared difference between original and stego image.
Payload Capacity: Amount of data embedded successfully.
The results indicate that LSB steganography is suitable for scenarios where visual quality must be preserved,
and minor distortions are allowable. However, the method is vulnerable to compression and image
manipulation.
Technigue Advantage:
Simplicity: Easy to implement and understand.
Imperceptibility: Human eyes cannot detect changes in pixel LSBs.
Reversibility: Message can be perfectly extracted.

IJCRT2504605 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f247

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
Implementation :

The proposed LSB-based image steganography system is implemented in Python. It supports encoding (hiding
messages) and decoding (extracting messages) through a user-friendly interface.

Tool/Tech Purpose

Python 3.x Programming language

PIL (Pillow) Image handling

NumPy Array operations

Tkinter GUI for interaction
Matplotlib Displaying images (optional)

1IV. ENCODING AND DECODING PROCESS
During the encoding phase, the system processes an input image and a text message provided by the user. The
text is converted into binary form, and each bit is embedded into the least significant bit of the image pixels.
Sample Encoding Code (Python) :
def encode_message(img_path, message, output_path="stego_image.png’):
image = Image.open(img_path)
binary_message = ".join(format(ord(i), '08b") for i in message) +'1111111111111110'
if image.mode in ‘(RGBA):
image = image.convert(RGBA")
data = image.getdata()
new_data =[]
msg_index =0
for pixel in data:
r, g, b, a=pixel
if msg_index < len(binary_message):
r=(r & ~1) | int(binary_message[msg_index])
msg_index +=1
if msg_index < len(binary_message):
g=(g & ~1) | int(binary_message[msg_index])
msg_index +=1
if msg_index < len(binary_message):
b= (b &~1) |int(binary_message[msg_index])
msg_index +=1
new_data.append((r, g, b, a))
image.putdata(new_data)
image.save(output_path)
return output_path
else:
raise ValueError("Image mode should be RGBA™)
Example usage:
encode_message("input.png”, "Hello Vishnu!")

IJCRT2504605 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f248

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Example decoding Code (Python) :
The decoder reads the LSBs from the image and reconstructs the binary stream. Once the special delimiter
1111111111111110 is encountered, the extraction stops, and the original message is converted back to text.
Sample Decoding Code (Python):
def decode_message(img_path):
image = Image.open(img_path)
binary data=""
if image.mode in (‘(RGBA):
data = image.getdata()
for pixel in data:
r, g, b, a=pixel
binary data +=str(r & 1)
binary data +=str(g & 1)
binary data +=str(b & 1)
all_bytes = [binary_data[i:i+8] for i in range(0, len(binary_data), 8)]
message = "'
for byte in all_bytes:
if byte =='11111110"
break
message += chr(int(byte, 2))
return message
else:
raise ValueError("Image mode should be RGBA™)
Example usage:
print(decode_message(*'stego_image.png"))

CONCLUSION

Image steganography constitutes a robust means of embedding sensitive information within digital images to
facilitate secure communication. This project successfully implemented a Least Significant Bit (LSB)-based
encoding and decoding technique utilizing Python. The chosen method effectively demonstrates how digital
images can serve as discreet carriers for concealed messages without arousing suspicion or compromising
image quality.

The encoding algorithm proficiently integrates secret data into image pixels, while the decoding procedure
accurately retrieves the original message without any data loss. Extensive testing with various sample images
and secret texts verified the system's functionality and reliability. Moreover, the implementation was designed
to be lightweight and compatible with Jupyter Notebook, thereby enhancing its suitability for academic and
research applications.

This study lays the groundwork for developing more sophisticated steganographic systems that may
incorporate encryption, compression, or Al-driven enhancements, thus paving the way for further
advancements in the field of secure information concealment.

REFERENCES

1. Johnson, N. F., & Jajodia, S. (1998). Exploring steganography: Seeing the unseen. IEEE Computer, 31(2),
26-34.
2. Provos, N., & Honeyman, P. (2003). Hide and seek: An introduction to steganography. IEEE Security &
Privacy, 1(3), 32-44.
3. Katzenbeisser, S., & Petitcolas, F. A. P. (2000). Information hiding techniques for steganography and
digital watermarking. Artech House.
4. Gutub, A. A., & Fattani, M. I. (2007). A novel Arabic text steganography method using points and
extensions. WASET International Journal of Computer, Information, Systems and Control Engineering.
5. Python Imaging Library (PIL)
IJCRT Journal Format Guidelines
1. Kaur, A., & Kaur, M. (2016). Image Steganography using LSB and Encryption Techniques.
International Journal of Advanced Research in Computer Science and Software Engineering
(NARCSSE), 6(6), 372-376.
2. Shinde, G., & Waghmare, R. (2021). A Review Paper on Image Steganography Techniques.
International Research Journal of Engineering and Technology (IRJET), 8(4).

IJCRT2504605 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f249

http://www.ijcrt.org/

