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Abstract: This research addresses the challenge of inefficient and often insecure information retrieval in
college settings by proposing an intelligent conversational interface. We developed a chatbot system that
allows users including Heads of Departments, Professors, and Students to query a MongoDB database
containing institutional data using natural language.

The system employs Retrieval-Augmented Generation (RAG) orchestrated by Langchain, using FAISS vector
stores and the Gemini 1.5 Flash as the LLM via Google Al API to provide contextually relevant and factually
grounded answers, minimizing LLM hallucinations. A key contribution is the tight integration of Role-Based
Access Control (RBAC), ensuring data access aligns strictly with user roles through index and metadata
filtering. Furthermore, post-retrieval filtering is implemented to enhance the LLM's accuracy when handling
specific tasks like counting. Built with Streamlit, the chatbot offers a user-friendly platform for secure, role-
appropriate, and efficient access to college information, streamlining data interaction for all user groups.

Keywords - Retrieval-Augmented Generation (RAG), Langchain, FAISS, Gemini 1.5 Flash, LLM, Google Al
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I. INTRODUCTION

Because data is dispersed across multiple systems and conventional search methods are time-consuming,
learning environments frequently struggle to provide effective access to information. This may cause delays
and inaccurate information since it may be difficult to find specific information about departments, instructors,
and students or other data stored by the users. A promising approach to expediting information retrieval is
conversational Al, which can comprehend natural language queries. Chatbots can offer rapid and easy access
to necessary data by letting users ask questions in their own words. Two important technologies that can further
improve the efficiency and security of such systems are Role-Based Access Control (RBAC) and Retrieval-
Augmented Generation (RAG). RBAC makes sure that users only have access to the data that is pertinent to
their roles, while RAG grounds chatbot responses in particular knowledge bases, increasing their accuracy and
dependability.

The goal of this research is to create a chatbot system that overcomes the drawbacks of conventional search
techniques and offers quick, accurate, and role-appropriate access to college information. The system meets
the need for a centralized, user-friendly platform that can securely and contextually deliver pertinent
information to various user groups, including professors, students, and heads of departments. A RAG-based
chatbot system with integrated RBAC is the suggested remedy. To comprehend user inquiries and produce
natural language responses, the system makes use of a Large Language Model (LLM). It uses the FAISS vector
search library to retrieve pertinent data from a MongoDB database and makes sure that users only see data that
they are permitted to view according to their designated role. To further hone the information that has been
retrieved and raise the precision of the LLM's responses, the system also uses post-retrieval filtering.

IJCRT2504568 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | €925


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

This is how the rest of the paper is structured. A review of related work is given in Section Il. Detalis about the
system is described in Section I1l. The approach used to create the RAG chatbot system is described in detail
in Section 1V. Results are presented and discussed in Section V. The paper is finally concluded in Section VI.
The future work are outlined in Section VII. Finally Acknowledgement and Reference outlined in Section VIII
and IX.

1. LITERATYRE REVIEW

2.1 Chatbots and Conversational Al
Chatbots are Al-powered programs designed to simulate human conversation, finding uses across various
sectors. In education, research explores their potential for personalized learning, student support, and
administrative tasks. The modeling-languages.com link addresses access control in conversational
interfaces, a pertinent aspect of chatbot design.

2.2 Retrieval-Augmented Generation (RAG)

By giving them access to outside knowledge sources, the Retrieval-Augmented Generation (RAG)
framework improves Large Language Models (LLMs). This method tackles the drawbacks of LLMs, which
occasionally produce erroneous or out-of-date information—a condition referred to as "hallucination.”" RAG
guarantees that the generated responses are based on factual information by obtaining pertinent information
from a knowledge base and giving it to the LLM as context. Retrieval, in which pertinent data is obtained
from an outside source, and Generation, in which the LLM utilizes the information retrieved to create a
response, are the two primary steps of the RAG pipeline. (An excellent place to start when implementing
RAG is the medium.com link.

2.3 RBAC (Role-Based Access Control)
One security measure that limits system access to authorized users is called Role-Based Access Control
(RBAC). RBAC makes sure that people can only access the data and resources required for their job
functions by allocating permissions to users according to their roles within an organization. RBAC is
essential for maintaining data security and safeguarding sensitive information ina college setting, such as
faculty or student records and for maintaining security and privacy.

2.4 LLMs, or large language models
The chatbot system uses Gemini 1.5 Flash as its Large Language Model (LLM), accessed via Google Al
API, to decode user inquiries and produce natural language answers. Choosing Gemini 1.5 Flash is taken in
context of the overall debate of LLMs, both their pros and cons. The model recognizes that capabilities of
the LLM, i.e., capabilities of Gemini 1.5 Flash to be instructed and create summaries of provided context,
play an important part in the general accuracy and effectiveness of the system.

2.5 Applicable Technologies
To operate efficiently, the chatbot system makes use of several technologies. The user interface is created
with Streamlit, which gives users a way to communicate with the chatbot. The framework for coordinating
the RAG pipeline, which links the different parts of the system, is Langchain. The college's data is stored in
a MongoDB database.

2.6 Research Focus and Literature Gap

Research Focus: The research centers on the construction of a chatbot system for university settings that
offers effective and secure access to information in the form of natural language queries. The system strives
to go beyond the weakness of conventional search methods through the implementation of a RAG-based
chatbot with the inclusion of RBAC.

Literature Gap: The paper bridges the gap of easily retrieving role-appropriate information in college
environments where information is usually dispersed and needs technical skills to query. Conventional
search techniques are tedious and do not securely impose access privileges. The new integration of RAG
and RBAC in this scenario bridges this gap with a system that offers precise, context-sensitive, and role-
suitable information access.
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I1l. PROPOSED SYSTEM

This research addresses the prevalent challenge of accessing specific, role-relevant information efficiently
within college environments, where data is often siloed and requires technical expertise to query. Traditional
search methods can be time-consuming and may not adequately enforce access permissions crucial in an
academic setting. The proposed solution is a Levelwise RAG Chatbot, a conversational Al system designed
to provide users (Students, Professors, and Heads of Departments - HODs) with intuitive, secure, and accurate
access to institutional data stored in a MongoDB database.

The core of the proposed system lies in its integration of Role-Based Access Control (RBAC) with a
Retrieval-Augmented Generation (RAG) architecture. RAG grounds the chatbot's responses in factual data
retrieved directly from the knowledge base (MongoDB collections and uploaded files), thereby minimizing the
risk of inaccurate or "hallucinated” information often associated with standalone Large Language Models
(LLMs). RBAC ensures that users can only query and retrieve information appropriate to their designated role
and departmental affiliation, maintaining data confidentiality and security.

The system leverages several key technologies: a Streamlit web interface provides a user-friendly
conversational front-end; LangChain serves as the orchestration framework for the RAG pipeline; MongoDB
acts as the primary data store, utilizing GridFS for efficient storage of uploaded files like departmental marks
sheets; FAISS vector stores are used for efficient similarity searching of embedded data; and an LLM (initially
Gemma 2 via Grog API, potentially switched to Gemini 1.5 Flash via Google Al API) handles natural
language understanding and response generation.

A key contribution of this system is the implementation of post-retrieval filtering, designed specifically to
enhance the LLM's accuracy when dealing with quantitative queries (like counting students or professors) by
refining the context provided to the LLM based on the query intent. The system aims to create a centralized,
context-aware platform that significantly improves information accessibility and usability for all members of
the college community.

1V. SYSTEM DESIGN AND IMPLEMENTATION

4.1 System Architecture

The system follows a modular design comprising a presentation layer, an orchestration layer, data

processing modules, and data storage layers.

e Presentation Layer: A web-based interface built using Streamlit (ui.py) handles user login, displays
user information and chat history, provides input fields for queries, and includes conditional
components for file/marks uploads based on user role.

e Orchestration Layer (app.py): The main Streamlit application script acts as the central orchestrator.
It manages user sessions and authentication (st.session_state, access_control.py), initializes core
LangChain components (LLM, embedding model, splitter), loads persistent data indexes
(mongo_handler.py), processes file uploads by invoking embedding_manager.py, dynamically
assembles the appropriate set of retrievers based on user role and available data sources (including
loaded marks indexes), orchestrates the multi-step RAG query pipeline using components defined in
chat_manager.py, and manages the overall application flow.

o Data Processing Modules:

o mongo_handler.py: Connects to MongoDB, formats data from collections (departments,
professors, students) using build_text_map, creates/loads/caches persistent FAISS indexes
(mongodb_faiss_index_*) stored locally.

o embedding_manager.py: Handles uploaded files. It uses LangChain document loaders
(PyPDFLoader, UnstructuredExcelLoader, etc.) to read and chunk content, generates
embeddings using the provided embedding_model, performs batch embedding for efficiency,
and saves resulting FAISS indexes for marks files to local disk
(faiss_indexes/marks_index_*.faiss).

o access_control.py: Manages user authentication against predefined credentials and handles
the storage of uploaded marks files into MongoDB GridFS, including relevant metadata.

IJCRT2504568 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ] e927


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

o chat_manager.py: Defines functions to build prompt components (get_prompt_components)
based on user context and refined instructions (for counting, formatting, etc.), and creates the
LangChain  chain  components  (create_history_aware_retriever_chain_component,
create_ga_chain_component) used in the RAG pipeline.

Data Storage Layer: Utilizes MongoDB for structured college data and GridFS for file storage, and

the local filesystem for persistent FAISS indexes. Streamlit session state is used for temporary storage

(e.g., FAISS index of a non-marks uploaded file).

4.2 Data Sources and Preparation
The system leverages two primary data sources:

1. Core College Data (MongoDB): Collections for departments, professors, and students reside in a

MongoDB database. During initialization (and managed by @st.cache_resource), the
load_or_create_faiss_indexes function in mongo_handler.py reads these collections. Data is
formatted into text using helper functions (build_text map), embedded using
GoogleGenerativeAlEmbeddings, and potentially chunked using RecursiveCharacterTextSplitter
(especially for department data). Embeddings are stored in persistent FAISS indexes on local disk,
with department metadata added for professors and students collections to enable RBAC filtering.
Uploaded Marks Files (GridFS & FAISS): Professors or HODs can upload files (e.g.,
ME_Marks.xlIsx) containing marks data. The upload_marks_file to gridfs function in
access_control.py stores the file content in MongoDB GridFS (marks bucket) along with metadata
like department, subject, and uploader. Subsequently, the process_uploaded file to_faiss function
in embedding_manager.py is triggered. This function reads the uploaded file (potentially from a
temporary copy), uses appropriate LangChain document loaders (PyPDFLoader,
UnstructuredExcelLoader, etc.)to extract and chunk the text using the provided splitter, generates
embeddings for the chunks in batches using the provided embedding_model, and saves the resulting
FAISS index to a persistent local directory (./faiss_indexes), named according to the uploader's
department (e.g., marks_index_ME.faiss).

4.3 Mechanism of Retrieval
The retrieval process aims to fetch the most relevant context for a given query, respecting RBAC
constraints:

1. History-Aware Query: The user's input and chat history are processed by

create_history aware_retriever_chain_component (defined in chat manager.py), which uses the
LLM to potentially rephrase the query into a standalone question.

Ensemble Retrieval: The (potentially rephrased) query is passed to an EnsembleRetriever instance
created in app.py. This ensemble combines multiple individual retrievers:

o Retrievers for the relevant MongoDB FAISS indexes (e.g., professors, students), filtered by
the user's department if the role is Professor or Student (search_kwargs={"filter": ...}).

o A retriever for the department-specific marks FAISS index (loaded from disk via
FAISS.load_local with allow_dangerous_deserialization=True), added only if the user is a
Student/Professor/HOD of that department.

o A retriever for a temporarily uploaded document (non-marks), added only if present in
st.session_state['uploaded_doc_vs'].

Document Fetching: Each active retriever fetches its top k relevant documents based on vector

similarity (with k configured potentially differently for MongoDB vs. uploaded sources). The

EnsembleRetriever aggregates these results.

4.4 Post-Retrieval Filtering
To enhance accuracy, particularly for counting tasks that were initially inconsistent, an explicit filtering
step occurs in app.py (Section 11) after documents are retrieved by the EnsembleRetriever but before
they are sent to the final LLM:

1.
2.

The original user query is analyzed for keywords like "student™ or "professor".

If the query appears specific (e.g., asking only about students), the list of retrieved documents (docs)
is filtered to include only those whose page_content starts with the corresponding tag ([Student] or
[Professor]).

This ensures the final QA chain receives a context (filtered_docs) more precisely tailored to the
specific entity type mentioned in the query, reducing potential confusion for the LLM.
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4.5 Generation of Answers
The final answer generation involves:

1. Prompt Construction: Relevant prompt components (user context string, combined instructions
including rules for counting, formatting, and answering based only on context) are retrieved using
get_prompt_components from chat_manager.py.

2. QA Chain Invocation: The final QA chain (create_ga chain_component using
create_stuff_documents_chain) is invoked in app.py. It receives a dictionary containing:

o The original user_input.
o The chat_history.
o The filtered_docs as the context.

3. LLM Call: The QA chain formats these inputs according to its prompt template and sends the
request to the configured LLM (ChatGoogleGenerativeAl - Gemini 1.5 Flash).

4. Response: The LLM generates the answer based solely on the provided filtered context, history,
and instructions. This answer string is returned and displayed to the user via the Streamlit interface.

4.6 Implementation of Role-Based Access Control (RBAC)

RBAC is implemented through several mechanisms:

1. Authentication: Users log in (login_page), and their role and department are stored in
st.session_state.current_user.

2. Ul Control: Streamlit sections for actions like uploading marks are conditionally rendered based
on current_user['role’] (e.g., only for 'Professor’, 'HOD").

3. Data Source Filtering: The select_indexes_for_user function restricts which types of MongoDB
data (collections/indexes) are accessible based on role.

4. Retrieval Filtering: For non-HOD roles, metadata filters ({"'department™: user_dept}) are applied
directly within the FAISS retriever's search_kwargs for MongoDB professor and student data,
ensuring only same-department information is retrieved. Similar filtering could be applied to the
marks retriever.

5. Write Permission Check: The upload marks file to gridfs function explicitly checks if
current_user['role"] is 'Professor' or 'HOD' before allowing the GridFS write operation.

4.7 Technology Stack
The system utilizes the following core technologies:
e Programming Language: Python 3.11.0
e Web Framework: Streamlit (for interactive Ul)
e Orchestration Framework: Langchain (for RAG pipeline components)

e LLM: Google Gemini 1.5 Flash (accessed via
langchain_google_genai.ChatGoogleGenerativeAl)
e Embedding Model: Google models/embedding-001 (via

langchain_google_genai.GoogleGenerativeAIEmbeddings)

e Vector Store: FAISS (via langchain_community.vectorstores.FAISS) for local storage and
similarity search.

o Database: MongoDB (for core college data and GridFS file storage) accessed via pymongo.
GridFS is used for file storage.

« Environment Management: Conda virtual environment.

o Dependencies: python-dotenv, langchain-core, langchain-community, document loader libraries
(pypdf, python-docx, unstructured, pandas, openpyxl, xIrd), streamlit, pymongo.

4.8 Environment of Development
The development was carried out using Python version 3.11.0. Project dependencies and the execution
environment were managed using a Conda virtual environment (conda venv). Key libraries included
specific versions of Langchain, Streamlit, Pymongo, FAISS, and Google Generative Al, installed via pip
within the Conda environment.
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V. RESULT AND DISCUSSION

5.1 Functional Verification
While formal quantitative benchmarks (such as precision, recall, F1-score, or large-scale user satisfaction
surveys) were not conducted within the scope of this project, the core functionalities of the Levelwise RAG
Chatbot were verified through iterative testing and observation during development. Key capabilities were
confirmed as follows:

Role-Based Access Control (RBAC): RBAC effectiveness was verified by logging in using
credentials corresponding to each defined role (HOD, Professor, Student). Queries were specifically
designed to test access boundaries. For example, Student and Professor accounts were confirmed to
retrieve data (e.g., student lists, professor lists) only from their assigned department (ME in testing
examples) due to the successful application of metadata filters in the FAISS retrievers. Conversely, the
HOD role demonstrated access to data across multiple departments (implicitly, by having access to all
MongoDB indexes).

Marks Data Workflow (GridFS & FAISS): The end-to-end process for handling department-specific
marks files was validated. This involved:

o Successfully uploading an Excel file (ME_Marks.xlsx) via the Professor/HOD interface, which
triggered storage in MongoDB GridFS using the upload_marks_file_to_gridfs function.

o Confirming the successful processing of this file by embedding_manager.py to create and save
a department-specific FAISS index (marks_index_ ME.faiss) to local disk.

o Verifying that the application correctly loaded this persistent index from disk for users in the
relevant department (ME) using FAISS.load_local (with
allow_dangerous_deserialization=True).

o Confirming that the retriever for this marks index was added to the EnsembleRetriever.

RAG Pipeline for Marks QnA: Student users successfully queried the chatbot for specific marks
contained within the uploaded and indexed Excel file (e.g., querying for “Thermodynamics” marks
yielded the correct value "82". This confirmed that the EnsembleRetriever was searching the marks
index and providing the necessary context to the LLM.

Contextual Understanding & Formatting: Through iterative refinement of the prompt instructions
within chat_manager.py, the chatbot demonstrated improved handling of conversational context
(pronoun resolution) and adherence to specified output formats (e.g., generating lists with items on
separate lines, prefixed by hyphens).

Counting Accuracy: Initial inconsistencies in LLM counting were addressed by implementing post-
retrieval filtering (based on query keywords like "student” or "professor" within app.py Section 11) and
refining prompt instructions, leading to accurate counts based solely on the appropriately filtered
context passed to the LLM.
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5.2 Qualitative Results

Qualitative analysis involved examining specific interactions across different user roles to assess functional
correctness and user experience. Key observations include:

o Example 1: Login Page for Users

@ ChatGPT

Levelwise RAG Chatbot

Login
Please log in to access the chatbot.

Username

Password

Fig.5.1- Chatbot login page for users

o Example 2: RBAC in Action (Student)

User: Rohit Jain
Department: CSE

J=) Levelwise RAG Chatbot

Document Q&A

Upload your Documents

How can | help you?

Drag and drop file here
B per file « PDF, TXT, DO
How many students are there? name them with their deparment

Browse files

Based on the provided documents, there are 4 students.

Rohit Jain (CSE)
Kartik Singh (CSE)
Swati Patel (CSE)
Ananya Sharma (CSE)

Fig.5.2- Chatbot replies names of students only of CSE branch
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o Example 2: Marks Query (Student)

_id: ObjectId('67f920b264d0e20763ba2250")

filename : "ME_Marks.xlsx"

* metadata : Object
chunkSize : 261120
length : 9205
uploadDate : 2025-04-11T14:01:22.427+00:00

How many marks did | score in Thermodynamics?

You scored 82 marks in Thermodynamics. 303 Prateek Mishra Thermodynam'\cs 82
303 Prateek Mishra Machine Design 80

How many marks did | score in Machine Design?

You scored 80 marks in Machine Design.

Fig.5.3-Chatbot replying from a file uploaded in Database and actual data in the file

o Example 3: HOD Access

Levelwise RAG Chatbot

How can | help you?
Name all the professors with their departments

Prof. Arvind Nair (ECE)
Prof. Neeta Sharma (ME)
Prof. Anil Gupta (CSE)
Prof. Manish Kumar (ME)
Prof. Kiran Rao (ECE)

Prof. Sneha Kulkarni (CSE)

Based on the provided documents, there are 6 professors.

Fig.5.4-HOD has access to complete Database
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Example 4:

User: Rohit Jain
Department: CSE E’
X

Levelwise RAG Chatbot

Document Q&A

Upload your Documents
DL How can | help you?

Drag and drop file here
B per file « PDF, TXT, DOCX, CSV,

What are LLM's?

Browse files

fmy Based on the provided text, LLMs are Large Language Models. They are cutting-edge artificial
D LLM.pdf intelligence systems that can process and generate text with coherent communication and

1.6MB generalize to multiple tasks.

'LLM.pdf' is active for Q&A.

Fig.5.5-Chatbot answering from the document uploaded

5.3 Discussion
The results indicate that the developed Levelwise RAG Chatbot successfully addresses the core objective
of providing secure, role-appropriate access to college information through a conversational interface.

Effectiveness of RAG: The RAG architecture, combining retrieval from FAISS vector stores (sourced
from MongoDB and uploaded files) with generation by the Gemini 1.5, proved effective in grounding
responses in factual data and significantly reducing the likelihood of hallucinations compared to using
an LLM alone. The inclusion of department-specific marks data via persistent FAISS indexes
demonstrated the system's ability to integrate diverse, dynamically updated knowledge sources.
RBAC Implementation: The multi-level RBAC mechanism, enforced through both selective index
access and metadata filtering within FAISS retrievers, successfully restricted data visibility according
to predefined roles (HOD, Professor, Student) and department affiliations. This is crucial for
maintaining data privacy and security in an educational context.

Post-Retrieval Filtering & Prompt Engineering: Initial challenges with LLM accuracy, particularly
in counting tasks within mixed-context results, highlighted the importance of targeted strategies. The
implemented post-retrieval filtering logic, which provides the LLM with only the specifically relevant
document types (e.g., only student documents when asked to count students), proved highly effective
in resolving these inaccuracies. This, combined with iterative prompt refinement focusing on explicit
instructions for counting and formatting, was essential for achieving reliable performance.

System Strengths: The system benefits from a modular design (app.py, mongo_handler.py,
embedding_manager.py, chat_manager.py), facilitating maintenance and potential future extensions.
The use of FAISS allows for efficient retrieval, while Streamlit provides a user-friendly suitable for
non-technical users. The integration of GridFS and persistent FAISS indexes allows for the handling
of specific datasets like departmental marks.
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e System architecture diagram

Ao + B e L + B et +
User Interface (UI) | | Backend Orchestration | | Data & Models |
| (Streamlit - app.py) | | (Python Code) | | |

| |
(Login Page [ui.py]) |
| |

- FAISS Create/Load/Save

|
|
|
Fommm oo R + | m e + |
| User Login | --(Role/Dept)--> [app.py] ---| Session State (User Info) | |
| [access_ctrl] | | (current_user) |
Fmmmm oo + o + |
| | |
Fommm oo T + Fmmm e oo + |
| Chat UI | | Section 4: Init Models (app.py) | | e +
| (Input/Output)| | - LLM (Geminil.5 Flash) |- > | Google AI API (Gemini) |
| [ui.py] | | - Embedding Model (GoogleGenAIEmbeddings) |- > | Google AI API (Embeddings)|
Fmmmm oo + | - Splitter (RecursiveCharacterTextSplitter) | | e +
| o + |
| |
| | Loads/Creates Mongo Indexes | B LT TR +
| | e o m e >| MongoDB (collegeDB) |
| | (app.py -> mongo_handler.py) | | - departments |
| | | | - professors |
| | | | - students |
| 3 | Ao m e +
| e + |
| | FATISS Indexes (MongoDB Data)|
| | (mongodb_faiss_index *) |<--(Load/Save)--+ [mongo_handler.py]
| | (Loaded via cache_resource) | | - DB Connect/Read
| T + | - Text Formatting
| |
| |
| v |
| A e oo + |
| | Filtered Mongo Indexes (RBAC) | |
| B + |
| | |
oo + - e Yo m e + |
| File Upload UL  |<-------o-mmoomomnm | Section 7: Build Retrievers | |
| (Prof/HOD Only) | | (app-py) | |
| [vi.py/app.py]l | | fem=emms=mcsemsmssomse=s + | I
B e + | | Mongo Retrievers (FAISS)| | |
| (Marks File) | | (Filtered by Dept/Role) | | |
| R S S o |
| | | | |
| | “osscscoscossscoscosssssos + | [=omsssscassacancasascassasons +
| Upload to GridFS | | Marks Retriever (FAISS) |<--(Load)-------- | FAISS Index (Marks Data) |
+---->[access_ctrl.py] -------- +->| (Filtered by Dept/Role) | | | (faiss_indexes/marks_*) |
| - upload_marks...() [ + | o m e +
| | | |
| Process & Save Index | | | fleocossosossossonoosasoasnoos +
| LT TR +-> [embedding_manager.py] | | MongoDB GridFS (marks...) |
- process_uploaded...() | | | - marks.files (Metadata) |
- Save FAISS to disk | e + | - marks.chunks (Data) |
| | Uploaded Doc Retriever [<--(Load)-------- | Session State |
| | (FAISS, if active) | | | (uploaded_doc_vs) |
[ + | Ao +
| | |
| v |
| e + |
| | EnsembleRetriever [
[ + |
D —,—,Y +
| (Used By)
BT TR + |
| User Query (Chat) | |
| [app.py] | I
oo mmm e + |
|
A T T +

Section 11: RAG Orchestration (app.py)

|
|
1. Get Prompts [chat_manager.py] |
2. Create History Chain [chat_manager.py] |
3. Create QA Chain [chat_manager.py] |
4. Tnvoke History Chain --» (History-Aware Query) --> EnsembleRetriever --> (Retrieved Docs) |
5 |
6 I

. Filter Docs (Python Logic: Student/Prof/Marks) ----» (Filtered Docs)
. Invoke QA Chain (Input + History + Filtered Context) --> LLM --> (Answer)
oo +
| (Answer)
|
e A +

| Display Answer (Chat) |

| [ui.py/app.py] |
GG EE LT P P +

Fig.5.6-Complete architecture of Levelwise RAG Chatbot
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VI. Conclusion

This paper presented the design, implementation, and functional verification of the Levelwise RAG
Chatbot, a system developed to address the challenges of secure and efficient information retrieval within
a college environment. The primary goal was to create an intuitive conversational interface enabling users
with varying roles—Students, Professors, and Heads of Departments (HODs)—to access institutional data
stored in MongoDB without requiring technical query language expertise.

The proposed system successfully integrates a Retrieval-Augmented Generation (RAG) architecture with
Role-Based Access Control (RBAC). By leveraging LangChain for orchestration, FAISS for efficient
vector searching across data sourced from MongoDB collections and uploaded files (including marks sheets
stored via GridFS), and a capable Large Language Model ([Specify Final LLM, e.g., Gemini 1.5 Flash]),
the chatbot provides contextually relevant and factually grounded responses while minimizing
hallucinations. The implemented RBAC mechanisms, including index selection and metadata filtering at
the retrieval stage, effectively restrict data access based on user roles and departmental affiliations, ensuring
data privacy and security.

Qualitative testing confirmed the system's core functionalities. It demonstrated the ability to enforce role-
based permissions, accurately retrieve specific information (such as student marks) from department-
specific files uploaded by authorized personnel, and handle conversational context across multiple turns.
The implementation of post-retrieval filtering and iterative prompt engineering proved crucial in enhancing
the LLM's accuracy for specific tasks like counting and adhering to desired output formats.

The modular architecture, separating concerns between Ul (streamlit, ui.py), data handling
(mongo_handler.py, embedding_manager.py, access_control.py), and RAG logic (chat_manager.py,
langchain), provides a solid foundation for maintainability and future extensions. While formal quantitative
evaluation was outside the scope of this project, the functional verification indicates the system's potential
to significantly improve information accessibility for non-technical users within the college.

Limitations include the current strategy for managing persistent marks indexes (potential overwriting) and
the need for more robust parsing of complex file types like spreadsheets. Future work could focus on
implementing index versioning or merging, enhancing document parsing capabilities, conducting large-
scale usability testing with guantitative metrics, and potentially expanding the chatbot's capabilities to
include secure write operations or more complex analytical queries.

In conclusion, the Levelwise RAG Chatbot demonstrates a practical and effective approach to building
secure, context-aware, and role-specific conversational Al systems for domain-specific information
retrieval, offering a valuable tool for enhancing data democratization within educational institutions.

VII. Future Works

While the current system effectively demonstrates role-based information retrieval using RAG, future
work will focus on addressing identified limitations and expanding its functionality.

e Excel Parsing: As noted, the current UnstructuredExcellLoader might load entire sheets as single
documents, potentially limiting the granularity of retrieval for specific marks. A more robust parser
(e.g., using pandas within embedding_manager.py to extract specific rows/cells into meaningful
chunks) could improve performance on detailed spreadsheet queries.

e Marks File Management: The current implementation saves marks indexes as
marks_index_[Dept].faiss, potentially overwriting previous uploads for the same department. A
more sophisticated strategy (e.g., using timestamps, subjects, or versioning in filenames/metadata;
or merging FAISS indexes) is needed for handling multiple marks files per department robustly.

e Scalability: While FAISS is efficient, performance with a very large number of documents or users
might require further optimization or transition to enterprise-grade vector databases. Embedding
speed for large uploads, while improved with batching, could still be a factor.

e LLM Dependence: The system's accuracy is still dependent on the chosen LLM's ability to follow
instructions and synthesize information from the provided context. Different LLMs (e.g., Gemini
1.5 Pro vs. Flash) might yield different results.
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