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Abstract: In today’s data-centric landscape, effective database interaction is vital for informed decision-

making. However, traditional querying methods require technical expertise in Structured Query Language 

(SQL), creating a barrier for non-technical users. This project proposes a user-friendly solution that enables 

natural language interaction with SQL databases, thereby democratizing access to structured data. 

We present a Streamlit-based web application that integrates LangChain agents with a large language model 

(LLM). This architecture allows users to input conversational prompts, which are interpreted and translated 

into executable SQL queries. The system removes the need for SQL proficiency, offering a simplified, 

scalable, and intuitive interface for data retrieval. Amid rapid advancements in AI and natural language 

processing (NLP), this solution exemplifies practical application by transforming complex database 

interactions into accessible tasks. It serves both technical and non-technical users, such as data analysts, 

decision-makers, and business professionals, enabling them to derive insights independently and efficiently. 

By reducing reliance on IT specialists and facilitating rapid data access, the proposed system contributes to 

more agile and data-driven business processes. Its design prioritizes usability, flexibility, and real-world 

applicability, addressing a growing need for intelligent, inclusive database tools in modern digital 

environments. 

Keywords - Natural Language to SQL, Conversational Database Interface, AI-powered Query Generation, 

SQL Automation, Intelligent Database Interaction, Natural Language Query Processing. 

I. INTRODUCTION 

In the era of data-driven decision-making, the ability to efficiently interact with databases is a fundamental 

requirement across diverse organizational roles. However, traditional database querying necessitates a 

strong command of Structured Query Language (SQL), which poses a barrier to non-technical users seeking 

to extract actionable insights from data. This project addresses this challenge by developing a web-based 

application that enables natural language interaction with SQL databases, thereby facilitating seamless 

access to structured data regardless of the user’s technical background. 

The proposed system is implemented using the Streamlit framework and integrates LangChain’s agent 

architecture with large language model (LLM). This combination allows for the interpretation of user 

queries expressed in natural language and their real-time conversion into syntactically valid SQL 

commands. As a result, users can perform complex data retrieval operations without explicit knowledge of 

database query syntax. 
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The application supports both SQLite and MySQL databases, offering flexibility and adaptability for 

various deployment contexts. Through a user-friendly interface, individuals can connect to a database of 

choice, authenticate securely, and submit queries in a conversational format. The system dynamically 

processes these inputs and retrieves relevant results, effectively mimicking a natural dialogue between the 

user and the database. 

This work aims to bridge the gap between sophisticated database systems and the demand for intuitive, 

human-centered data access tools. By eliminating the dependency on SQL proficiency, the proposed 

solution democratizes data interaction, streamlines analytical workflows, and enhances productivity in 

modern business environments. 

II. LITERATURE SURVERY 

2.1 Survey of Existing Systems: 

 

Numerous tools and platforms have emerged to simplify interaction with SQL databases. However, most still 

require users to possess a foundational understanding of SQL or database structures. Existing solutions fall into 

several categories: 

 SQL Query Builders: Tools such as SQLizer and SQL Fiddle enable users to generate SQL queries via 

graphical interfaces. While these reduce the need to write code manually, users must still comprehend 

database schema and relational logic. They also lack natural language support, limiting accessibility. 

 Business Intelligence Tools: Platforms like Tableau and Power BI offer powerful data visualization and 

query generation through drag-and-drop interfaces. Although they abstract some complexity, they often 

demand users to grasp the underlying data model and SQL-like operations, posing challenges for non-

technical users. 

 Natural Language Query Interfaces: Tools such as AskData and Qlik enable users to pose natural 

language questions that are translated into SQL queries. However, their applicability is typically confined 

to predefined query types and domains, limiting flexibility and robustness. 

 AI-Powered Chatbots: Some organizations deploy AI chatbots for data-related inquiries. These systems 

utilize machine learning to interpret queries, but often lack the precision required to generate accurate and 

complex SQL statements consistently. Their capabilities are generally restricted to simple interactions. 

 Natural Language Processing Libraries: Frameworks like Rasa and Dialogflow allow developers to 

build custom NLP-powered interfaces. While powerful, these require extensive development efforts and 

technical knowledge, rendering them impractical for widespread adoption by general users. 

 

2.2 Research Gap: 

 

Despite progress in query abstraction and AI-based solutions, a significant gap persists in systems that 

can reliably translate natural language into SQL across various query types, with minimal user 

training or setup. Most current solutions either compromise on flexibility, require customization, or 

lack sufficient accuracy. This gap underscores the need for a platform that provides real-time, natural 

language-based access to databases in a way that is both intuitive and technically robust. 

 

2.3 Problem Definition and Objectives 

 

2.3.1 Problem Statement: 

Accessing and analyzing relational data remains a technical hurdle for non-specialists due to the necessity 

of mastering SQL. This limits data accessibility for many stakeholders who could otherwise contribute to 

data-driven decision-making. The core challenge lies in developing a solution that allows users to interact 

with databases using natural language, while maintaining query accuracy and system performance. 

 

2.3.2 Objectives: 

The primary objective of this project is to design and implement a Streamlit-based web application that 

enables users to interact with SQL databases through natural language queries. Key goals include: 

1. Creating an intuitive interface that abstracts SQL complexity. 

2. Integrating advanced NLP capabilities to translate natural language into SQL. 

3. Supporting efficient and accurate data retrieval and insights generation. 
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4. Enhancing database usability for non-technical users across various domains. 

 

2.4 Scope of the Project 

The scope of this project encompasses the following components: 

 User Interface Development: Design an accessible, conversational UI using Streamlit, suitable for 

users with minimal technical expertise. 

 Natural Language Processing: Utilize Llama Model model through LangChain to interpret user inputs 

and convert them into structured SQL queries. 

 Database Interaction: Support dynamic querying for multiple databases (e.g., MySQL, SQLite), 

ensuring secure connections and efficient query execution. 

 Insights Generation: Provide meaningful outputs such as summaries, visualizations, or metrics from 

retrieved data, along with support for iterative querying. 

 Testing and Evaluation: Conduct accuracy assessments of the NLP-to-SQL translation and gather user 

feedback to refine the application. 

 Documentation and Support: Deliver a comprehensive user guide and troubleshooting resources to 

assist users in operating the system effectively. 

 

III. PROPOSED SYSTEM 

3.1 System Overview 

 

The proposed system is a Streamlit-based web application that enables users to query SQL databases 

using natural language. It is built upon the LangChain framework, leveraging Meta Llama 3 language 

model Using Groq’s Api  for translating user inputs into executable SQL queries. This approach allows 

users with little or no knowledge of SQL to interact seamlessly with databases, democratizing data access 

and enabling efficient decision-making. 

 

3.2 System Architecture 

 

Key Components: 

 LangChain: Serves as the core framework for handling natural language processing. It manages 

query parsing, model interaction, and agent coordination. 

 Groq API (LLaMA3-8B-8192): Powers the language model backend, enabling accurate translation 

of natural language into SQL queries. 

 Streamlit: Provides an interactive web UI for user input, database selection, and result display. 

 SQLAlchemy: Abstracts database operations, handling secure, dynamic connections to both 

SQLite and MySQL databases. 

 

Operational Flow: 

1. Database Selection & Authentication: Users choose a database (SQLite/MySQL) and provide 

credentials for remote access (if needed). 

2. API Key Validation: The system verifies the Groq API key to enable secure model access. 

3. Query Processing: 

o Natural language input is collected via the Streamlit interface. 

o LangChain processes the input and uses Groq’s LLM to generate a valid SQL query. 

4. Execution & Response: 

o The query is executed using SQLAlchemy. 

o Results are retrieved, formatted, and displayed to the user in a readable format. 

Current Limitation: 

 The system is currently read-only. It supports SELECT queries but intentionally excludes data 

manipulation operations (INSERT, UPDATE, DELETE) to prevent unintentional data changes. 
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3.3 Hardware and Software Requirements 

 

 3.3.1 Hardware Requirements: 

  Below are the Hardware Requirements for the Model to run Locally 

Table 1 Hardware Requirements 

Component Specification 

Processor Multi-core CPU (Intel i5 / AMD Ryzen 5) or 

higher 

Ram Minimum 8 GB 

Storage 256 GB SSD (preferred) or HDD 

Graphics Integrated GPU sufficient (no dedicated GPU 

needed) 

Operating 

System 

Windows 11 (development), compatible with 

macOS and Linux 

 

 3.3.2 Software Requirements: 

  For the software stack, various tools, libraries, and frameworks were utilized to ensure  

smooth development and functioning of the system. But if the Model is deployed and the end 

user is using it he/she does not have to install any software. The software is up on the web which 

can be easily accessible via internet 

 

 

Below is the Software requirement for the Model to run Locally: 

Table 2 Software Requirements 

Category Description 

IDE Visual Studio Code – lightweight and extensible 

Python development 

Language Python – primary language for logic, APIs, and 

database interaction 

Web 

Framework 

Streamlit – for building and deploying 

interactive web UIs 

NLP 

Framework 

LangChain – for natural language to SQL 

processing 

Database 

Libraries 

SQLAlchemy and SQLite3 – ORM and local 

database interface 

LLM 

Integration 

Groq API (LLaMA3-8B-8192) – for natural 

language interpretation 

Databases 

Supported 

SQLite (lightweight, local) and MySQL 

(scalable, remote-capable) 

Package 

Manager 

pip – for managing and installing Python 

dependencies 

Version 

Control 

GitHub – for collaborative development and 

version tracking 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                   © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882 

IJCRT2504431 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d727 
 

IV. SYSTEM DESIGN AND IMPLEMENTATION DETAILS 

4.1 Overview 

 

The proposed system is designed to enable users to interact with relational databases using natural language, 

eliminating the need for direct SQL knowledge. The architecture emphasizes modularity, scalability, and 

ease of use, allowing seamless integration of various databases and language models. Key components 

include a Streamlit-based UI, a Groq-powered LLM, a database connector layer, and an agent framework 

based on LangChain. 

 

4.2 Architectural Components 

 

4.2.1 User Interface 

The front end is developed using Streamlit, offering an intuitive chat-based interface. Users can submit 

queries in natural language, select between supported databases (SQLite or MySQL), and view results 

directly. Sensitive inputs like API keys and credentials are handled securely through the sidebar. 

 

 
Fig. 1: Shows Streamlit Web Interface UI 

 

 

4.2.2 Language Model Integration 

At the core of the system is Groq’s Llama3-8b-8192 language model. It translates user input into 

syntactically valid and semantically relevant SQL queries, based on contextual understanding and 

schema-specific awareness. This eliminates the need for users to learn SQL. 

 

4.2.3 Database Connector 

Database interaction is abstracted using SQLAlchemy, which supports both SQLite (for local data) and 

MySQL (for external connections). Users can dynamically switch between databases through the UI. 

SQLAlchemy simplifies ORM operations and enhances portability across database types. 

 

4.2.4 Agent Framework 

LangChain’s SQL Agent acts as the middleware between the language model and the database. It 

leverages SQLDatabaseToolkit to manage the flow from user query to SQL execution and result 

retrieval. This component ensures smooth coordination and execution of the pipeline. 
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Fig.2: Process of Natural Language to Sql Conversion, [1] 

 

4.3 Functional Workflow 

 

Users interact via the Streamlit interface, selecting a database and entering natural language queries. API 

keys and MySQL credentials are securely submitted. The LLM interprets the user query and translates it 

into an SQL command, considering database schema and intent.SQLAlchemy establishes a connection 

with the selected database. The SQL query is executed, and relevant results are fetched.Retrieved results 

are processed and displayed in a readable format on the web interface. LangChain’s agent ensures 

consistency and error-handling throughout the flow. 

 

4.4 Design Considerations 

 

Each component (UI, LLM, agent, DB connector) operates independently, allowing easier debugging, 

maintenance, and future upgrades. Components can be swapped or upgraded (e.g., replacing LLMs or 

adding PostgreSQL support) without impacting the overall architecture. The system is designed to 

integrate additional databases and model endpoints as needed with minimal structural changes. 

Credentials are not exposed in plain text. The system currently supports read-only database operations, 

mitigating risks associated with write access. 

 

4.5 Implementation Methodology 

The system was developed in iterative phases: 

4.5.1 Requirement Analysis:  
Identified the need for a no-code database querying system targeting non-technical users. 

4.5.2 Design: 
Architected the system using a client-server model with modular boundaries between the 

frontend, backend, and language model integration. 

4.5.3 Implementation: 

User input is parsed using tokenization techniques to extract relevant keywords. A Lang 

Chain based agent interfaces with the LLM and database layers. SQL Alchemy handles 

query execution and result fetching. Results are rendered clearly via Stream lit, maintaining 

conversational flow. 
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V. TESTING AND RESULTS 

After the query is executed, the results are returned to the system, processed by the LangChain agent, and 

then presented back to the user through the Streamlit interface. The user receives a clear, readable output 

from the database, allowing them to interact with and explore the data without any direct SQL knowledge. 

 
Fig.3. Result in Natural Language 

 

 
Fig.4. Query Execution and Response Result 
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VI. CONCLUSION 

In conclusion, the project successfully demonstrates the capabilities of a Streamlit-based web application 

that enables users to interact with SQL databases through natural language queries. By leveraging advanced 

technologies such as LangChain and Groq's LLM, the system provides a user-friendly interface that abstracts 

the complexities of SQL, allowing users to retrieve insights from databases without needing extensive 

knowledge of query syntax. The architecture of the application, with its robust encoder-decoder framework, 

ensures accurate interpretation of user queries and effective generation of SQL commands. The design 

prioritizes data retrieval while maintaining security, as the system is engineered solely for reading data, thus 

preventing unintended modifications to the database. 

Ultimately, this project not only showcases the potential of AI-driven solutions in simplifying database 

interactions but also opens avenues for further research and development in the realm of natural language 

processing and database management. Through ongoing efforts, we aspire to build a more versatile tool that 

empowers users with deeper insights and greater accessibility to data. 

VII. FUTURE WORKS 

While the integration of LLMs into text-to-SQL systems has achieved significant strides in natural language 

querying, a number of challenges remain. These will be overcome with future research that will further 

improve the performance, efficiency, and usability of these systems. As seen from the elaboration on some 

key challenges and their possible solutions in the following, it will shape the evolution of this paradigm 

 

A. Scalability and Computational Efficiency 

Enhancing LLM-based text-to-SQL systems for large and complex databases without losing 

computational efficiency is an important challenge. The processing and generation cost of SQL 

queries remains high, especially with longer sequences and larger datasets. Future solutions will 

likely focus on model optimizations, more efficient retrieval and storage mechanisms, and 

specialized indexing techniques to streamline query generation. 

 

B. Dynamic Adaptation to Schema Changes 

 

Real-world databases are dynamic, constantly evolving with schema changes and added data, 

necessitating adaptation of LLM-based systems without full retraining. Techniques like incremental 

learning and flexible architectures will enable seamless updates of both LLMs and KGs, maintaining 

up-to-date query accuracy, particularly for rapidly changing databases. 

 

C. Contextual Accuracy and Disambiguity 

 

Many LLM-based text-to-SQL systems face challenges in handling complex and ambiguous queries 

where context is not explicitly given. Improving contextual accuracy will require research into how 

LLMs use structured information from KGs. Enhancing semantic links between user queries and the 

database schema will be critical, and more advanced semantic parsing and disambiguation 

techniques will help resolve ambiguity. 

 

D. Ethics, Data Privacy, and Interpretability 

 

The application of LLMs in critical domains like healthcare, finance, and education raises ethical 

concerns regarding data privacy and model interpretability. It is essential for such systems to be 

transparent, reliable, and respectful of user privacy. Future work will need to establish clear 

explainability protocols, safe data handling practices, and transparent AI procedures to build trust in 

LLM-based text-to-SQL systems 

 

E. Knowledge Graph Integration and Maintenance 

 

While knowledge graphs improve schema awareness and enhance query precision, their 

construction and maintenance are complex and resource-intensive. A scalable implementation will 

require efficient automation of KG creation and optimized integration with LLMs. Additionally, 
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developing dynamic updating techniques for KGs without degrading performance is crucial for 

ensuring that systems remain effective as data and schemas evolve. 
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