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Abstract: In today’s data-centric landscape, effective database interaction is vital for informed decision-
making. However, traditional querying methods require technical expertise in Structured Query Language
(SQL), creating a barrier for non-technical users. This project proposes a user-friendly solution that enables
natural language interaction with SQL databases, thereby democratizing access to structured data.

We present a Streamlit-based web application that integrates LangChain agents with a large language model
(LLM). This architecture allows users to input conversational prompts, which are interpreted and translated
into executable SQL queries. The system removes the need for SQL proficiency, offering a simplified,
scalable, and intuitive interface for data retrieval. Amid rapid advancements in Al and natural language
processing (NLP), this solution exemplifies practical application by transforming complex database
interactions into accessible tasks. It serves both technical and non-technical users, such as data analysts,
decision-makers, and business professionals, enabling them to derive insights independently and efficiently.

By reducing reliance on IT specialists and facilitating rapid data access, the proposed system contributes to
more agile and data-driven business processes. Its design prioritizes usability, flexibility, and real-world
applicability, addressing a growing need for intelligent, inclusive database tools in modern digital
environments.

Keywords - Natural Language to SQL, Conversational Database Interface, Al-powered Query Generation,
SQL Automation, Intelligent Database Interaction, Natural Language Query Processing.

I. INTRODUCTION

In the era of data-driven decision-making, the ability to efficiently interact with databases is a fundamental
requirement across diverse organizational roles. However, traditional database querying necessitates a
strong command of Structured Query Language (SQL), which poses a barrier to non-technical users seeking
to extract actionable insights from data. This project addresses this challenge by developing a web-based
application that enables natural language interaction with SQL databases, thereby facilitating seamless
access to structured data regardless of the user’s technical background.

The proposed system is implemented using the Streamlit framework and integrates LangChain’s agent
architecture with large language model (LLM). This combination allows for the interpretation of user
queries expressed in natural language and their real-time conversion into syntactically valid SQL
commands. As a result, users can perform complex data retrieval operations without explicit knowledge of
database query syntax.
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The application supports both SQL.ite and MySQL databases, offering flexibility and adaptability for
various deployment contexts. Through a user-friendly interface, individuals can connect to a database of
choice, authenticate securely, and submit queries in a conversational format. The system dynamically
processes these inputs and retrieves relevant results, effectively mimicking a natural dialogue between the
user and the database.

This work aims to bridge the gap between sophisticated database systems and the demand for intuitive,
human-centered data access tools. By eliminating the dependency on SQL proficiency, the proposed
solution democratizes data interaction, streamlines analytical workflows, and enhances productivity in
modern business environments.

Il. LITERATURE SURVERY

2.1 Survey of Existing Systems:

Numerous tools and platforms have emerged to simplify interaction with SQL databases. However, most still
require users to possess a foundational understanding of SQL or database structures. Existing solutions fall into
several categories:

SQL Query Builders: Tools such as SQLizer and SQL Fiddle enable users to generate SQL queries via
graphical interfaces. While these reduce the need to write code manually, users must still comprehend
database schema and relational logic. They also lack natural language support, limiting accessibility.
Business Intelligence Tools: Platforms like Tableau and Power Bl offer powerful data visualization and
query generation through drag-and-drop interfaces. Although they abstract some complexity, they often
demand users to grasp the underlying data model and SQL-like operations, posing challenges for non-
technical users.

Natural Language Query Interfaces: Tools such as AskData and Qlik enable users to pose natural
language questions that are translated into SQL queries. However, their applicability is typically confined
to predefined query types and domains, limiting flexibility and robustness.

Al-Powered Chatbots: Some organizations deploy Al chatbots for data-related inquiries. These systems
utilize machine learning to interpret queries, but often lack the precision required to generate accurate and
complex SQL statements consistently. Their capabilities are generally restricted to simple interactions.
Natural Language Processing Libraries: Frameworks like Rasa and Dialogflow allow developers to
build custom NLP-powered interfaces. While powerful, these require extensive development efforts and
technical knowledge, rendering them impractical for widespread adoption by general users.

2.2 Research Gap:

Despite progress in query abstraction and Al-based solutions, a significant gap persists in systems that
can reliably translate natural language into SQL across various query types, with minimal user
training or setup. Most current solutions either compromise on flexibility, require customization, or
lack sufficient accuracy. This gap underscores the need for a platform that provides real-time, natural
language-based access to databases in a way that is both intuitive and technically robust.

2.3 Problem Definition and Objectives

2.3.1 Problem Statement:

Accessing and analyzing relational data remains a technical hurdle for non-specialists due to the necessity
of mastering SQL. This limits data accessibility for many stakeholders who could otherwise contribute to
data-driven decision-making. The core challenge lies in developing a solution that allows users to interact
with databases using natural language, while maintaining query accuracy and system performance.

2.3.2 Objectives:
The primary objective of this project is to design and implement a Streamlit-based web application that
enables users to interact with SQL databases through natural language queries. Key goals include:

1. Creating an intuitive interface that abstracts SQL complexity.

2. Integrating advanced NLP capabilities to translate natural language into SQL.

3. Supporting efficient and accurate data retrieval and insights generation.
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4. Enhancing database usability for non-technical users across various domains.

2.4 Scope of the Project
The scope of this project encompasses the following components:

User Interface Development: Design an accessible, conversational Ul using Streamlit, suitable for
users with minimal technical expertise.

Natural Language Processing: Utilize LIama Model model through LangChain to interpret user inputs
and convert them into structured SQL queries.

Database Interaction: Support dynamic querying for multiple databases (e.g., MySQL, SQLite),
ensuring secure connections and efficient query execution.

Insights Generation: Provide meaningful outputs such as summaries, visualizations, or metrics from
retrieved data, along with support for iterative querying.

Testing and Evaluation: Conduct accuracy assessments of the NLP-to-SQL translation and gather user
feedback to refine the application.

Documentation and Support: Deliver a comprehensive user guide and troubleshooting resources to
assist users in operating the system effectively.

I11. PROPOSED SYSTEM

3.1 System Overview

The proposed system is a Streamlit-based web application that enables users to query SQL databases
using natural language. It is built upon the LangChain framework, leveraging Meta Llama 3 language
model Using Groq’s Api for translating user inputs into executable SQL queries. This approach allows
users with little or no knowledge of SQL to interact seamlessly with databases, democratizing data access
and enabling efficient decision-making.

3.2 System Architecture

Key Components:

e LangChain: Serves as the core framework for handling natural language processing. It manages
query parsing, model interaction, and agent coordination.

o Groqg API (LLaMA3-8B-8192): Powers the language model backend, enabling accurate translation
of natural language into SQL queries.

« Streamlit: Provides an interactive web Ul for user input, database selection, and result display.

e SQLAIchemy: Abstracts database operations, handling secure, dynamic connections to both
SQL.ite and MySQL databases.

Operational Flow:
1. Database Selection & Authentication: Users choose a database (SQLite/MySQL) and provide
credentials for remote access (if needed).
2. API Key Validation: The system verifies the Groq API key to enable secure model access.
3. Query Processing:
o Natural language input is collected via the Streamlit interface.
o LangChain processes the input and uses Groq’s LLM to generate a valid SQL query.
4. Execution & Response:
o The query is executed using SQLAIlchemy.
o Results are retrieved, formatted, and displayed to the user in a readable format.
Current Limitation:
e The system is currently read-only. It supports SELECT queries but intentionally excludes data
manipulation operations (INSERT, UPDATE, DELETE) to prevent unintentional data changes.
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3.3 Hardware and Software Requirements

3.3.1 Hardware Requirements:
Below are the Hardware Requirements for the Model to run Locally

Table 1 Hardware Requirements

Component Specification

Processor Multi-core CPU (Intel i5/ AMD Ryzen 5) or
higher

Ram Minimum 8 GB

Storage 256 GB SSD (preferred) or HDD

Graphics Integrated GPU sufficient (no dedicated GPU
needed)

Operating Windows 11 (development), compatible with

System macOS and Linux

3.3.2 Software Requirements:

For the software stack, various tools, libraries, and frameworks were utilized to ensure

smooth development and functioning of the system. But if the Model is deployed and the end
user is using it he/she does not have to install any software. The software is up on the web which

can be easily accessible via internet

Below is the Software requirement for the Model to run Locally:

Table 2 Software Requirements

Category

Description

IDE

Visual Studio Code — lightweight and extensible
Python development

Language

Python — primary language for logic, APIs, and
database interaction

Web
Framework

Streamlit — for building and deploying
interactive web Uls

NLP
Framework

LangChain — for natural language to SQL
processing

Database
Libraries

SQLAIchemy and SQLite3 — ORM and local
database interface

LLM
Integration

Groq API (LLaMAS3-8B-8192) — for natural
language interpretation

Databases
Supported

SQLite (lightweight, local) and MySQL
(scalable, remote-capable)

Package
Manager

pip — for managing and installing Python
dependencies

Version
Control

GitHub — for collaborative development and
version tracking
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IV. SYSTEM DESIGN AND IMPLEMENTATION DETAILS

4.1 Overview

The proposed system is designed to enable users to interact with relational databases using natural language,
eliminating the need for direct SQL knowledge. The architecture emphasizes modularity, scalability, and
ease of use, allowing seamless integration of various databases and language models. Key components
include a Streamlit-based Ul, a Grog-powered LLM, a database connector layer, and an agent framework
based on LangChain.

4.2 Architectural Components

4.2.1 User Interface

The front end is developed using Streamlit, offering an intuitive chat-based interface. Users can submit
queries in natural language, select between supported databases (SQLite or MySQL), and view results
directly. Sensitive inputs like API keys and credentials are handled securely through the sidebar.

Choose the DB which you want to chat

© Use SQLLite 3 Database

& LangChain: Chat with SQL DB

GRog API Key

Poy Please add the groq api key

How can | help you?

Fig. 1: Shows Streamlit Web Interface Ul

4.2.2 Language Model Integration

At the core of the system is Groq’s Llama3-8b-8192 language model. It translates user input into
syntactically valid and semantically relevant SQL queries, based on contextual understanding and
schema-specific awareness. This eliminates the need for users to learn SQL.

4.2.3 Database Connector

Database interaction is abstracted using SQLAIlchemy, which supports both SQL.te (for local data) and
MySQL (for external connections). Users can dynamically switch between databases through the Ul.
SQLAIchemy simplifies ORM operations and enhances portability across database types.

4.2.4 Agent Framework

LangChain’s SQL Agent acts as the middleware between the language model and the database. It
leverages SQLDatabaseToolkit to manage the flow from user query to SQL execution and result
retrieval. This component ensures smooth coordination and execution of the pipeline.
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Query

: SELECT E
Question | LLMB | [ —— LLM} B Answer

ORDER BY DisplayName

Optional: SQL Agent
Fig.2: Process of Natural Language to Sql Conversion, [1]

4.3 Functional Workflow

Users interact via the Streamlit interface, selecting a database and entering natural language queries. API
keys and MySQL credentials are securely submitted. The LLM interprets the user query and translates it
into an SQL command, considering database schema and intent. SQLAIchemy establishes a connection
with the selected database. The SQL query is executed, and relevant results are fetched.Retrieved results
are processed and displayed in a readable format on the web interface. LangChain’s agent ensures
consistency and error-handling throughout the flow.

4.4 Design Considerations

Each component (Ul, LLM, agent, DB connector) operates independently, allowing easier debugging,
maintenance, and future upgrades. Components can be swapped or upgraded (e.g., replacing LLMs or
adding PostgreSQL support) without impacting the overall architecture. The system is designed to
integrate additional databases and model endpoints as needed with minimal structural changes.
Credentials are not exposed in plain text. The system currently supports read-only database operations,
mitigating risks associated with write access.

4.5 Implementation Methodology
The system was developed in iterative phases:
45.1 Requirement Analysis:
Identified the need for a no-code database querying system targeting non-technical users.
4.5.2 Design:
Architected the system using a client-server model with modular boundaries between the
frontend, backend, and language model integration.
4.5.3 Implementation:
User input is parsed using tokenization techniques to extract relevant keywords. A Lang
Chain based agent interfaces with the LLM and database layers. SQL Alchemy handles
query execution and result fetching. Results are rendered clearly via Stream lit, maintaining
conversational flow.
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V. TESTING AND RESULTS
After the query is executed, the results are returned to the system, processed by the LangChain agent, and

then presented back to the user through the Streamlit interface. The user receives a clear, readable output
from the database, allowing them to interact with and explore the data without any direct SQL knowledge.

How can | help you?

what is this database about

v sql_db_list_tables: (empty string) v
v/ sql_db_schema: STUDENT v
v/ Complete! v
v/ Complete! v

This database is about students in a school or educational institution.

Fig.3. Result in Natural Language

v sqgl_db_schema: STUDENT

Action: sql_db_schema
Action Input: STUDENT

CREATE TABLE "STUDENT" ( "NAME" VARCHAR(25), "CLASS" VARCHAR(25), "SECTION"
VARCHAR(25), "MARKS" INTEGER )

/* 3 rows from STUDENT table: NAME CLASS SECTION MARKS Krish Data Science A 90 John
Data Science B 100 Mukesh Data Science A86 */

v Complete!

v sql_db_query: SELECT * FROM STUDENT LIMIT 10

v Complete!

Final Answer: The database is about students, their classes, sections, and marks.

Fig.4. Query Execution and Response Result

IJCRT2504431 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d729


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
V1. CONCLUSION

In conclusion, the project successfully demonstrates the capabilities of a Streamlit-based web application
that enables users to interact with SQL databases through natural language queries. By leveraging advanced
technologies such as LangChain and Groq's LLM, the system provides a user-friendly interface that abstracts
the complexities of SQL, allowing users to retrieve insights from databases without needing extensive
knowledge of query syntax. The architecture of the application, with its robust encoder-decoder framework,
ensures accurate interpretation of user queries and effective generation of SQL commands. The design
prioritizes data retrieval while maintaining security, as the system is engineered solely for reading data, thus
preventing unintended modifications to the database.

Ultimately, this project not only showcases the potential of Al-driven solutions in simplifying database
interactions but also opens avenues for further research and development in the realm of natural language
processing and database management. Through ongoing efforts, we aspire to build a more versatile tool that
empowers users with deeper insights and greater accessibility to data.

VIl. FUTURE WORKS

While the integration of LLMs into text-to-SQL systems has achieved significant strides in natural language

querying, a number of challenges remain. These will be overcome with future research that will further
improve the performance, efficiency, and usability of these systems. As seen from the elaboration on some
key challenges and their possible solutions in the following, it will shape the evolution of this paradigm

A. Scalability and Computational Efficiency

Enhancing LLM-based text-to-SQL systems for large and complex databases without losing
computational efficiency is an important challenge. The processing and generation cost of SQL
queries remains high, especially with longer sequences and larger datasets. Future solutions will
likely focus on model optimizations, more efficient retrieval and storage mechanisms, and
specialized indexing techniques to streamline query generation.

B. Dynamic Adaptation to Schema Changes

Real-world databases are dynamic, constantly evolving with schema changes and added data,
necessitating adaptation of LLM-based systems without full retraining. Techniques like incremental
learning and flexible architectures will enable seamless updates of both LLMs and KGs, maintaining
up-to-date query accuracy, particularly for rapidly changing databases.

C. Contextual Accuracy and Disambiguity

Many LLM-based text-to-SQL systems face challenges in handling complex and ambiguous queries
where context is not explicitly given. Improving contextual accuracy will require research into how
LLMs use structured information from KGs. Enhancing semantic links between user queries and the
database schema will be critical, and more advanced semantic parsing and disambiguation
techniques will help resolve ambiguity.

D. Ethics, Data Privacy, and Interpretability

The application of LLMs in critical domains like healthcare, finance, and education raises ethical
concerns regarding data privacy and model interpretability. It is essential for such systems to be
transparent, reliable, and respectful of user privacy. Future work will need to establish clear
explainability protocols, safe data handling practices, and transparent Al procedures to build trust in
LLM-based text-to-SQL systems

E. Knowledge Graph Integration and Maintenance
While knowledge graphs improve schema awareness and enhance query precision, their

construction and maintenance are complex and resource-intensive. A scalable implementation will
require efficient automation of KG creation and optimized integration with LLMs. Additionally,
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developing dynamic updating techniques for KGs without degrading performance is crucial for
ensuring that systems remain effective as data and schemas evolve.
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