IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Web Application For Mobile Purchase And Eco-Friendly Trade-Ins

¹ Hrithik Kumar Ukey, ² Diksha P, ³ Jishnu P Katta, ⁴ Khushi Chourasia, ⁵ Ms Varalakshmi ¹Dept of CSE CMR University, Bangalore, India

Abstract- As internet shopping grows, so does demand for sustainable choices. The Mobile Shopping and environmentally friendly Swapping web application combines mobile purchasing with a durable trade-in mechanism. Buying new and refurbished things and swapping gently used devices, books, and clothing reduces waste and promotes a circular economy. The platform offers personalised recommendations, secure payment mechanisms, and real-time inventory adjustments to improve user experience. It makes sure that traded-in products are ethically recycled or reconditioned by working with recycling facilities including environmental NGOs. The site awards eco-friendly purchases to encourage sustainable spending. This concept aims to easily integrate sustainability into online shopping. The platform integrates technology with ethical consumerism to facilitate convenient and eco-friendly purchase. This strategy emphasises simplicity, long-term viability and scalability to establish a new benchmark for e-commerce.

Keywords - Environmentally sustainable transactions, green finance, sustainable purchasing, mobile commerce, secure exchanges, real-time inventory management, AI-augmented procurement, waste reduction, responsible recycling, environmentally aware choices, incentive-driven rewards.

1. INTRODUCTION

Rapid technological advances and environmental consciousness are changing e-commerce. Consumers more and more want simple, environmentally friendly goods that reflect their beliefs. Traditional online stores give transactions top priority over environmental consequences of discarded items. The previously mobile Sale and environmentally friendly substituting web app combines mobile buying with good trade-in options.

This cutting-edge programme enables users to explore, purchase, and trade pre-owned devices, books, and apparel. The platform advocates for a circular economy in order to minimise waste and repurpose resources for environmental protection. This platform distinguishes itself from conventional e-commerce models by facilitating new acquisitions with ethical disposal and reuse and recycling, assuring that items are either repaired for resale or disposed of appropriately through sustainability initiatives.

The user-focused platform offers safe payment options, real-time inventory monitoring, and AI-driven recommendations. It ensures accessibility and usability by providing a consistent purchasing and a trade-in experience across platforms. Advanced data analytics improves customer interactions, suggestions and sustainability measures including recycling waste and ecological impact reduction.

Sustainable behaviour rewards distinguish this platform. The network supports sustainable consumption by granting scores or savings for trade or eco-friendly delivery. This app facilitates environmentally suitable recycling of non-reusable goods by working with cemeteries and green groups.

This project aims to set a new benchmark for sustainable e-commerce as consumers become more ecoconscious. Through science and technology, comfort, and environmental stewardship, the platform improves shopping and reduces e-waste and textile waste. The comprehensive app encourages users to incorporate sustainability into their online buying routines.

The goal is to combine internet shopping and sustainability. The platform can alter digital commerce by reacting to technology advances and improving its environmental sustainability. Since businesses and consumers value responsible consumption, the Cell Phone Purchase and Eco-Friendly Trade-In platform is a progressive solution that balances innovation with environmental responsibility.

2. RELATED WORKS

Mobile purchase and trade-in platforms have grown due to the necessity for long-term e-commerce solutions. Huang and colleagues [1] developed a mobile app to encourage eco-friendly phone purchases and recycling. Users can redeem eco-credits for savings, event tickets, or charity donations via the app. QR code observing, eco-ratings, and credit control demonstrate the effectiveness of incentive-based sustainability strategies in e-commerce. The study's user survey showed positive feedback, but usability recommendations suggest additional room for improvement.

Online apps need front-end development for seamless user experiences. The components of HTML, CSS, JavaScript, a Bootstrap, and AdminLTE were tested for reliability, scalability, and usefulness in modern web design by Gaikwad and Adkar [2]. The study compares frameworks for creating responsive, global user interfaces. Their research emphasises the need of choosing proper tools to improve the user interface and agility, especially for smartphone purchasing systems with visually pleasing and intuitive interfaces.

User experience and platform reliability depend on web performance optimisation. Firtman [3] explained lazy launching code splits, and picture optimisation for online apps, whereas Grigorik [4] studied HTTP/2 speed improvements through queuing and compression. Park et al. [5] examined online performance optimisation solutions, particularly in cloud computing environments, highlighting the need of fast response times in e-commerce applications. These studies help mobile purchase platforms run smoothly, especially amid peak demand.

The backend architecture of e-commerce systems necessitates database management and secure connectivity. Kamani et al. [6] evaluated PHP-MySQL database connection methodologies concerning execution speed, resource utilisation, and scalability. They offer significant insights on enhancing database interactions to augment the app's efficiency and responsiveness. Stobart [7] evaluated MySQL's architecture, security, performance, and scalability, affirming its appropriateness for extensive e-commerce systems. These recommendations assist mobile shopping application developers in selecting the optimal database.

E-commerce platforms require security and user verification for secure transactions. Ramirez [8] examined the potential of JSON Web Tokens (JWT) in safeguarding RESTful APIs via authentication and authorisation. Bradley and Lockhart [9] elucidated the enhancements in online application security provided by OAuth 2.x & OpenID Connect. Martinez and Perez [10] discovered that JWT in RESTful applications safeguards sensitive user information in mobile purchasing systems. These studies emphasise the necessity of secure authentication to protect user actions and data.

SEO boosts e-commerce exposure and reach. Enge et al. [11] examined advanced SEO approaches to increase organic traffic and ranks. Berman [12] focused on mobile shopping platform search engine optimisation and content marketing. Zhang and his colleagues [13] demonstrated how SEO increases e-commerce visitor numbers and involvement. To increase online exposure and consumer acquisition, mobile buying platforms need these information.

E-commerce product suggestions and user experience personalisation require machine learning. Hossain [14] examined machine learning for eco-friendly product and trade-in recommendations. Patel and colleagues [15] studied data mining models in internet shopping customisation, whereas Singh and colleagues [16] studied AI-powered customer support chatbots. These studies show how AI may boost

mobile shopping solution utilisation and customer service.

3. PROPOSED SYSTEM

3.1 Introduction

The system that is suggested is a versatile, safe, and efficient online shopping site that enables the acquisition of mobile devices and provides an environmentally sustainable trade-in programme for obsolete devices. It also incorporates cryptocurrency payments, enabling users to conduct secure and decentralised transactions.

This system guarantees efficient order processing, trade-in assessments, and user account administration, while integrating instantaneous data entry, analytics, and adherence to financial regulations. Utilising blockchain technology enhances transaction safety, transparency, and efficiency.

3.2 System Synopsis

The system offers multiple essential functionalities:

- An intuitive e-commerce platform for exploring and acquiring mobile devices.
- Sustainable trade-in initiative allowing customers to exchange obsolete devices.
- Support for multiple payment methods, encompassing both fiat and digital asset transactions.
- Sophisticated data processing and analytics for the generation of business insights.
- Secure blockchain-based transactions with Know Your Customer (KYC) verification and fraud
- The integration of these functionalities improves the shopping experience and fosters sustainability.

3.3 System Architecture

The system employs an arrangement of three levels to guarantee modularity, scalability, and maintenance efficiency.

3.4 Client-Side (Frontend)

The frontend facilitates user interaction by delivering an intuitive and quick interface. Technologies Employed: HTML5, CSS3, Twitter Bootstrap, JavaScript, AJAX

Principal Attributes:

- Exhibits product listings, trade-in assessments, and payment alternatives.
- Enables users to explore, add items to the waggon, and finalise purchases.
- Establishes a design that is flexible for fluid mobile and desktop interactions.

3.5 Server-Side (Backend)

The backend manages company policies, payments, and trade-in assessments. Technologies Utilised: Node.js, Python (Flask or Django), The use of Express.js and RESTful APIs

Principal Attributes:

- Oversees authentication for users, fulfilment of orders, and inventory management.
- Facilitates secure transactions through digital currencies and fiat payment systems.
- Facilitates integration with the digital ledger for decentralised transactions.

3.6 Database Layer

The database guarantees secure keeping and access of user, product, including transaction information. Technologies Utilised: MySQL/PostgreSQL (an organised way data), MongoDB (logs & analytics)

Principal Attributes:

- Maintains customer accounts, order histories, trade-in requests, and payment information.
- Preserves the transaction logs for protection and auditing purposes.
- Guarantees data integrity and inhibits unauthorised access.

3.7 Integrations with External APIs

- The system incorporates various third-party services to augment its functionality.
- Cryptocurrency Payment Gateway API: Enables blockchain transactions.
- Fiat payment portal API: Facilitates conventional card and bank transactions.
- KYC and Fraud Detection API: Guarantees adherence to regulatory standards.
- Trade-In Evaluation API: Evaluates the worth of pre-owned devices.
- These integrations augment system dependability and security.

3.8 Modules and Functionalities

The system comprises multiple modules, each responsible for distinct operations.

3.9 User Administration Module

- This module oversees identification of users, roles, and profile configurations.
- User Registration and Login: reliable authorisation for clients and administrators.
- Profile Management: Enables users to modify personal information.
- Role-Based Access: Limits administrative functions for standard users.

3.10 Management of Products Module

- This module oversees mobile device inventories and stock quantities.
- CRUD Operations: Enables administrators to add, modify, or delete products.
- Inventory Monitoring: Oversees stock levels and provides restocking notifications.
- Promotional Banner Management: Facilitates marketing via homepage advertisements.

3.11 Shopping Cart and Checkout Module

- This module optimises the purchasing process for customers.
- Modify Cart: Users can add or remove products from their shopping cart.
- Calculation of Total Price: Comprises the price of the good, taxes, and discounts.
- Multi-Payment Support: Accommodates both fiat and digital money transactions.

3.12 the order processing Module

- This module guarantees efficient order processing and fulfilment.
- Order Placement: Validates transactions and produces invoices.
- Order Tracking: Provides real-time status of orders.
- Administrative Order Management: Facilitates modifications to processing and delivery.

3.13 Trade-In Module

- This module assesses obsolete devices and offers store credit.
- Device Evaluation: Assesses trade-in worth.
- Approval Procedure: Administrator confirms trade-in eligibility.
- Store Credit System: Awards credits to users for validated trade-ins.

3.14 Integration of Cryptocurrency Payments

This module manages secure transactions based on blockchain technology.

- Decentralised Payments: Facilitates cryptocurrency transactions.
- Cryptocurrency Wallet Administration: Retains payments prior to merchant disbursement.
- Automatic Conversion: Transforms cryptocurrency to fiat currency when necessary.
- Blockchain Ledger: Records transactions to ensure security and transparency.

3.15 Data Transmission and Processing

The system utilises real-time data broadcasting and scheduled processing for efficient transaction management and analytics.

3.16 Enquiry on Messaging

- Functions as a communication centre for real-time transaction oversight.
- Facilitates real-time cryptocurrency sales and market information.
- Disseminates data about transactions for evaluation and reporting purposes.

3.17 FDP The consumption (File Data Processing)

- Processes incoming data for analysis and verification.
- Batch Ingestion: Facilitates the processing of historical financial data.
- Real-time Ingestion: Acquires live transaction streams.

3.18 Data retention Layers

- Guarantees organised and secure storage of data.
- Raw Data: Contains unrefined transactions.
- Journaling: Records all modifications for auditing purposes.
- Derived Data: Offers organised insights and analyses.

3.19 Reports and Analytics

- Provides business intelligence via data-driven insights.
- Real-time Reports: Exhibits payment processes and trade-in trends.
- Fraud Detection Analysis: Discerns dubious transactions.
- Business Insights: Monitors sales, sales trends, and consumer behaviour.

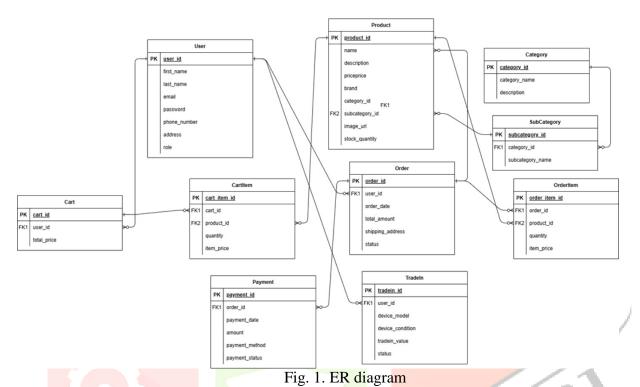
3.20 Security and Compliance Protocols

The system employs various security mechanisms to guarantee a secure and compliant platform.

- KYC Verification: Mitigates fraudulent transactions.
- Blockchain Encryption: Guarantees secure transaction documentation.
- Backup and Archival: Safeguards essential user and financial information.
- Role-Based Access Control: Restricts sensitive operations to administrators.
- These measures augment trust and dependability in the platform.

3.21. Benefits of the suggested System

- Scalability: Accommodates substantial transaction volumes effortlessly.
- Security: Utilises blockchain encryption and adheres to regulatory compliance.
- Environmentally Sustainable: Promotes recycling via trade-in programmes.
- Expedited Transactions: Facilitates immediate cryptocurrency payments.
- Analytics-Driven: Employs AI for identifying fraud and business intelligence.


By leveraging these benefits, the system delivers a contemporary, secure, and efficient the internet experience. The Mobile Store and Sustainable Trade-in Web Application incorporates digital currencies, secure payment systems, and continuous data analysis to improve the mobile purchase experience. The system guarantees integrity, effectiveness, and longevity in mobile transactions through the facilitation of cryptocurrency payments, trade-ins, and sophisticated data processing.

4. METHODOLOGY

The Mobile Retail and Sustainable Trade-in Web Application was developed using Agile methods to provide flexibility. Agile allows for feedback and adaptability, boosting system effectiveness and user happiness. Sprints produce functional modules for testing and evaluation. This iterative procedure ensures user administration, item being listed, trade-in processing, and bitcoin payments work.

The system's three-tier architecture ensures versatility, scalability, and maintainability. The frontend uses CSS3, HTML5, Bootstrap, and JavaScript, and AJAX for responsiveness and dynamicity. Backend development uses Node.js or Py (Flask/Django) for corporate logic, registration, and API connections. For structured data, MySQL or PostgreSQL is used, whereas MongoDB is used for logs and transaction data. Third-party API connectors streamline the handling of payments, trade-in examinations, and KYC verification.

The system streamlines data flow and processing with continual streaming and batch processing. Transaction updates from real-time data ingestion provide accurate inventory and payment tracking. Batch processing manages large historical data sets for analysis and reporting. Messaging queries provide asynchronous service communication, ensuring fast and reliable transaction processing. Unrefined transaction data is structured by the Information Processing Layer (DPL) for identifying fraudulent activity, intelligence for business, and performance evaluation.

Cryptocurrency payments boost security and decentralisation. The digital asset payment gateway converts bitcoin to fiat cash and authenticates payments using blockchain technology. Payment Processing Before transferring funds to the merchant, the crypto wallet holds them. Transaction immutability prevents fraud and unauthorised changes in the blockchain ledger. Multi-payment support lets users choose among cash, cryptocurrency, and digital payments, increasing accessibility.

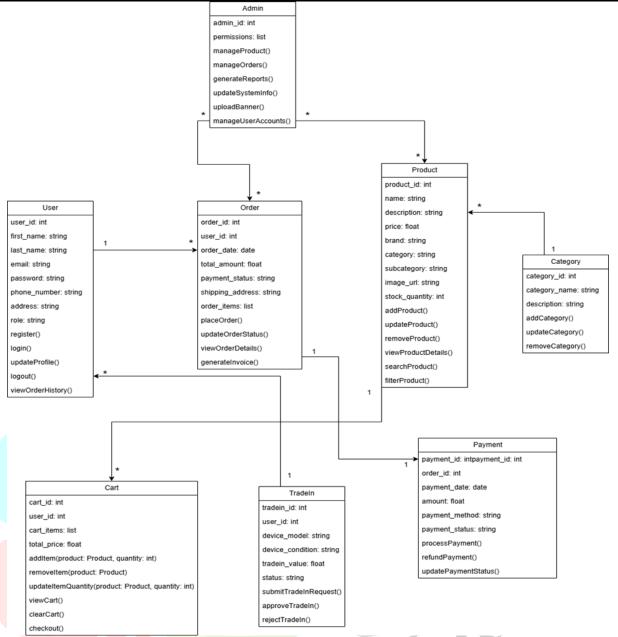


Fig. 2. Class diagram

Sustainable trade-in initiative assesses used equipment and awards store credit or rebates for new purchases. The customer provides device parameters, which an AI-driven price model or external exchanges APIs evaluates. Store credit is given to eligible applicants. For transparency and fraud prevention, the system records trade-in transactions digitally. Administrators can approve, refuse, or request more verification before trade-ins, assuring security and efficiency.

The system needs security to secure user data and comply with rules. RBAC restricts unauthorised access. Customers and merchants must undergo KYC verification to prevent identity fraud and comply with financial legislation. Transaction records are unchangeable with blockchain encryption. Backup and archive systems protect critical data, while detecting fraud algorithms constantly monitor transactions for anomalies.

Unit, integration, and user acceptability testing (UAT) ensure system functioning and reliability. Security testing finds holes and reduces cyberattacks. To improve scalability and performance, the programme is deployed to Amazon Web Services, Azure, or Google Cloud Services after approval. CI/CD pipelines monitor and update the system to ensure security, efficiency, and user responsiveness. Regular repair and performance optimisation boost system efficiency and user happiness.

5. RESULTS

The Phone Marketplace and Sustainable Trade-in Web Application met its goals by simplifying mobile device purchases and exchanges. Customers may browse products, manage carts, and pay via the responsive frontend interface. The backend system handled authorisation of users, fulfilment of orders, and trade-in assessments, enabling module-wide interactions. Live messaging questions enhanced system responsiveness, enabling management of stock, trade-in status, & order tracking updates.

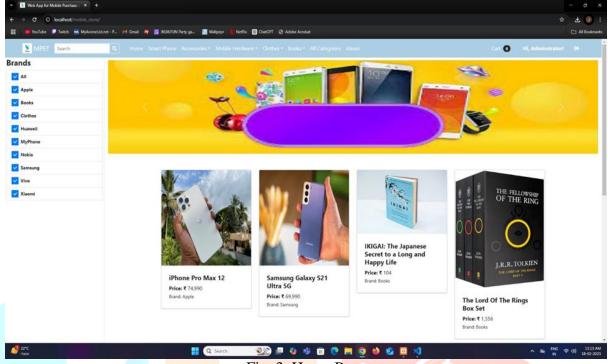


Fig. 3. Home Page

Customer cryptocurrency transactions were successful with the cryptocurrency payment gateway. Blockchain verification ensured full visibility of transactions and fraud reduction as the system processed payments effectively. Multiple payment methods allowed consumers to choose among bitcoin, fiat currency, and digital payments, providing flexibility and inclusiveness. Payment Processing Wallets provide optimised financial operations and security by managing temporary fund storage before shifting them to merchant accounts.

AI-driven assessment helped the trade-in module value old gadgets. To prevent bogus claims, a digital trade-in ledger awarded shop credit or discounts based on equipment condition. The admin panel allowed trade-ins approvals, rejections, and additional verifications, assuring a safe exchange. The RBAC, or role-based access control, system efficiently controlled user permissions, differentiating client and admin capabilities to prevent unauthorised access.

Efficiency, security, and scalability were verified through extensive testing. Load testing showed the application's ability to handle high traffic from users, while security testing established industry standards for securing sensitive client data. Effective cloud platform installation improved system performance and access, ensuring user reliability. Monitoring and maintenance ensured the application's robustness, scalability, and adaptability to changing user needs.

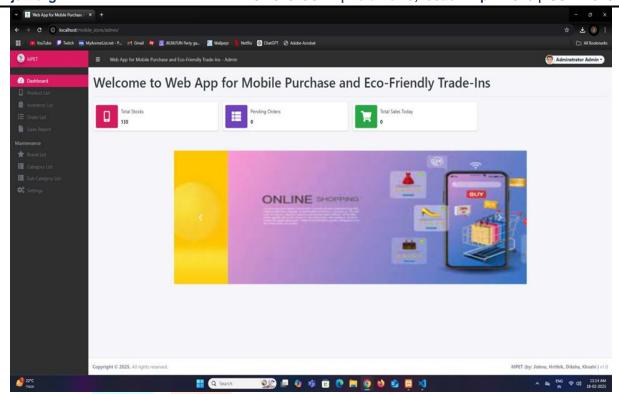


Fig. 4. Admin page

6. CONCLUSION

The finalisation of the mobile purchasing web application signifies a notable accomplishment in providing a comprehensive and resilient online shopping solution. The platform utilises HTML, CSS, JavaScript, and iQuery for the front end, and PHP for the back end, ensuring a smooth and dynamic user experience. The incorporation of JWT for secure user identification, Docker for containerisation, and Kubernetes for management guarantees scalability, dependability, and uniform performance. Nginx functions as a robust web server, whereas Jenkins automates continuous integration and continuous deployment procedures, facilitating seamless updates and maintenance. The implementation of the ELK Stacks for monitoring and recording enables real-time performance assessment and problem resolution. The platform's software requirements consist of Microsoft 10/11, MacOS, or Linux for installation and testing, utilising XAMPP version 3.3.0 with PHP 8.0.7 & MySQL 5.7 or above as the production platform. The frontend technologies include HTML, CSS, JavaScript (Ajax, jQuery), and Bootstrap, whereas the backend utilises PHP for server-side programming. MySQL functions as the principal server for data storage. The platform employs the AdminLTE framework for the admin panel, guaranteeing a user-friendly and productive interface. The PayPal API is incorporated for safe transaction processing. Future improvements intend to include AIdriven personalisation, sophisticated payment alternatives, worldwide accessibility, and augmented reality functionalities, ensuring the mobile purchasing web application remains at the front of e-commerce innovations. The proposed enhancements will improve consumer satisfaction, productivity, and security, establishing the platform as a prominent contender in the online commerce sector. The effective implementation of the web service satisfies present market requirements and establishes a robust basis for future expansion and technological progress.

7. ACKNOWELDGEMENT

Authors extends their thanks to CMR University for the facilities and support provided in writing of this article. We also appreciate the valuable suggestions and constructive feedback from the reviewers.

8. REFERENCES

- [1] H. Huang, D. Su, and W. Peng, "Novel Mobile Application System for Implementation of an Eco-Incentive Scheme," 2022.
- [2] S. S. Gaikwad and P. Adkar, "A Review Paper on Bootstrap Framework," 2020.

[3] M. Firtman, "Web Performance Optimization: Challenges and Techniques," 2021.

- [4] Grigorik, "HTTP/2 and its Impact on Web Performance," 2021.
- [5] J. Park, H. Kim, and D. Lee, "Efficient Web Application Performance Optimization Techniques," IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2021.
- [6] G. J. Kamani, Y. R. Ghodasara, R. S. Parmar, and V. S. Parsania, "Performance Study of Various Connectivity of PHP and MySQL Database," 2023.
- [7] S. Stobart, "The MySQL Database Management System," 2022.
- [8] J. Ramirez, "Securing RESTful Web Services Using JSON Web Token (JWT)," 2018.
- [9] J. Bradley and H. Lockhart, "OAuth 2.0 and OpenID Connect: A Detailed Overview," 2018.
- [10] R. Martinez and J. Perez, "Securing REST APIs with JSON Web Token," IEEE International Conference on Computational Science and Computational Intelligence (CSCI), 2018.

- [11] E. Enge, S. Spencer, and J. Stricchiola, "The Art of SEO," 2020.
- [12] M. Berman, "SEO Best Practices for Mobile Purchase," 2020.
- [13] L. Zhang, Y. Liu, and M. Li, "Improving E-commerce Visibility through SEO Strategies," IEEE International Conference on Big Data and Smart Computing (BigComp), 2020.
- [14] S. S. Hossain, M. U. Hasan, A. A. Khandoker, and M. S. Rahman, "Personalization and Eco-Friendly Product Recommendations in E-Commerce: A Machine Learning Approach," 2021.
- [15] N. Patel, R. Sharma, and S. Verma, "Personalized Recommendation Systems in E-Commerce Using Machine Learning," IEEE International Conference on Machine Learning and Applications (ICMLA), 2021.
- [16] Singh, P. Kumar, and D. Jain, "AI-Powered Chatbots for Enhancing Customer Support in E-Commerce," IEEE International Conference on Artificial Intelligence and Machine Learning (AIML), 2019.