www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éb INTERNATIONAL JOURNAL OF CREATIVE
9 RESEARCH THOUGHTS (1JCRT)

@a *" An International Open Access, Peer-reviewed, Refereed Journal

From Words To SQL.: Utilizing Langchain And
Langsmith For Query Generation

IMithun S R, ?Dheeraj H, 3Gangadhar V, “Kalmesh M Teli, °Gyanappa A Walikar
!Department of Computer Science and Engineering
ICMR University, Bangalore, India

Abstract - For people lacking technical knowledge, natural language searching significantly increases data
access. Knowledge of database architecture and the particular language linked with conventional SQL
retrieval techniques could impede the efficient use of data. By combining LangChain and LangSmith, this
project builds an NL2SQL (Natural Language to SQL) framework converting user queries into comparable
SQL statements. Advanced natural language processing (NLP) technologies (Huang et al., 2021) used by
the system allow smooth interactions across several database schemas, management of complicated queries
including joins and aggregations, and exact interpretation of user intent. Given the model's architecture for
generating cross-database code, it is vital to emphasize that the only database backends accessible for
implementation are MySQL, PostgreSQL, and SQLite. By reducing dependence on technical teams, the
proposed approach speeds up decision-making.

Keywords -Natural language processing, LangChain, LangSmith, data democratization, machine
learning, query optimization, SQL query generation

1. INTRODUCTION

A key area of research in database administration and human-computer interaction has been the ability to
transform natural language into SQL queries. Closing the gap between users with little SQL knowledge and
database queries has drawn much attention as databases grow more crucial in many industries. Researchers
have looked at various text-to-SQL conversion techniques—including deep learning, transformer-based
models, and rule-based approaches—to increase accuracy and efficiency [1],[2].

Recently developed algorithms for deep and learning representations have substantially enhanced text-to-
SQL systems. Multi-task representation learning was used to improve SQL formulation for single-table
queries in M-SQL by Zhang et al. [1]. To construct appropriate SQL queries, their research shows that
natural language input syntax and meaning must be understood. Kumar et al. examined transformer-based
and sequence-to-sequence systems for deep learning-based text-to-SQL conversion [2].

Converting natural language to SQL is difficult with sophisticated queries and unclear inputs. The sequence-
to-sequence model by Mellah et al. combines transformer design with association rules to address this.
Aligning the syntax of SQL with natural language inputs improves SQL creation [4]. Ning et al. also
examined natural language database query user errors and found issues with attention misalignment and
user interaction approaches [5]. These experiments underline the need for robust error-handling systems in
text-to-SQL translation.

Multiple text-to-SQL methods have been created to speed up and simplify SQL inference. Gan et al. created

IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www ijcrt.org | b731

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
PlainSQL to simplify database interactions for non-experts by turning simple English commands into SQL
queries [6]. Eleftherakis et al. have presented a new database strategy that generates natural language SQL
query explanations, boosting comprehension and usefulness [7]. These improvements reflect ongoing
database querying user experience improvements.

One more unique key feature of the text-to-SQL systems is the hypothesis reranking. Zeng et al. found that
reranking N-best hypotheses for text-to-SQL models by integrating multiple candidate searches and ranking
them by confidence ratings improved Mysqgl production reliability [9]. Baig explored ways for transforming
natural language processing to SQL, emphasizing the benefit of improving deep learning models for
efficiency [8]. Integration with text-to-SQL systems has also been considered using chat-based interfaces.
Khadija et al. [10] put up a deep learning-based framework to transform natural language queries into SQL
for conversational artificial intelligence systems. This work moves the larger objective of improving the
accessibility and usability of database interface for non-SQL competent individuals.

Another area of academic research has been the natural language explanation of structured queries. Koutrika
et al. examined techniques to produce natural language explanations of SQL queries [11] to enable users
grasp complex database queries and improve their search criteria. These strategies increase system usability
and user participation by offering simple, quick reasons. All things considered, natural language to SQL
translation is still an active and evolving field with research being done to improve user experience, control
complicated queries, and increase model accuracy. Text-to-SQL systems will benefit from the integration
of supervised learning, sequence-to-sequence designs, and interactive database explanations, leading to
improved results and access [1]— [11].

2. RELATED WORKS

Databases can seem exotic to non-technical users. Naturally Speaking to SQL (NL2SQL) lets people ask
enquiries in basic English (or any additional language) and transforms them into SQL queries. Researchers
have tried everything from rule-based approaches to modern artificial intelligence (Al) to improve this
technology's accuracy and usability.

Zhang, et al. [1] developed M-SQL in 2020 to handle single-table requests by learning many tasks. It
improved query structure understanding and result accuracy with this method. In 2021, Kumar, et al. [2]
evaluated Text2SQL technologies and noted how transformer-based approaches like ChatGPT were
changing the field. At same a period of time Doctor. Ch Mallikarjuna and colleagues [3] examined schema
alignment and sophisticated query creation, emphasizing the importance of context for accurate translations.

In 2024, Mellah et al. [4] suggested an architecture using transformers and association rules to simplify SQL
searches. Ning et al. [5] proposed enhanced attention methods and user guidance to reduce query phrasing
errors in 2023 instead of merely upgrading the tech.

Natural SQL (Gan et al. [6], 2021) demonstrated how semantic understanding might greatly enhance
accuracy, while Eleftherakis et al. [7] examined describing SQL queries in simple terms to make databases
more approachable. Baig [8]'s 2022 assessment neatly summarized the way deep learning and its
transformer have altered NL2SQL, while conceding that specific to the domain applications still present
distinct obstacles.

Zeng, et al. [9] (2023) invented an N-best assumption reranking approach to improve estimates, and Khadija
and Mustapha [10] (2024) created CHAT-SQL, a deep learning-powered real-time NL2SQL system.
Remember Koutrika et al. [11]'s 2010 study showing how simplifying SQL answers could help non-experts
use databases.

All these improvements show that NL2SQL has grown, but it can further improve. The newest large-scale
language models (LLMs) and rapid methods of engineering will be used to integrate LangChain and
LangSmith to render interactions with databases smoother and more intuitive.

IJCRT2504211] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b732

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

3. PROPOSED SYSTEM

We enable customers to ask questions in simple English and immediately turn them into exact SQL queries,
making database interactions easy. We use Google's strong Gemini-Pro model, LangChain, and LangSmith
to:

° Match database schemas to user questions intelligently.
° Correct, executable SQL queries.
° Easy database access with a clean interface.

Nobody needs to learn SQL with this method; anyone can get what information they need through
conversation. The system manages the complexity of technology when users focus on data analysis.

3.1 SYSTEM SUMMARY

This approach lets users ask database questions in natural language. The correct SQL queries are generated
from these inputs and checked against the database schemas. When a user requests, "Display all customers
who placed an order,” Figure 1 illustrates how the system generates the following SQL query.

customers.®

customers

orders customers.id = orders.customer_id,

Figure.l. Generated SQL query

By using LangChain, the solution guarantees quick parsing and query creation, therefore enabling SQL
querying for non-technical users.

3.2 FRONT END RUNNING

User interactions with HTML, CSS, and React.js are handled via the online application in an intuitive way.
HTML defines the architecture of the program, including input fields for inquiries and submission buttons.
Frameworks like Tailwind CSS or Bootstrap improve the user interface (Ul) with CSS, making it responsive
and aesthetically pleasing across many devices. React.js enables dynamic interactions so users can ask
questions, get SQL responses, and effectively control state changes. Moreover, React.js enables smooth API
integration by dynamically showing the results and forwarding user requests to the backend.

IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b733

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Speak Your Query, Get Instant SQL!

Effortlessly convert natural language into SQL queries with
LangChain's intelligent LLM-powered framework.

(Entcr your natural language Database: v)

Figure.2. Frontend
3.3 BACKEND API USING FASTAPI
FastAPlI, a high-performance framework for API development, drives the backend of the system.

Major FastAPI Features:

° enables asynchronous processing to speed up request handling.

) Pydantic helps to ensure accurate inputs by means of data validation.

° Swagger Ul can be used to automatically produce API documentation for simplified diagnostics and
testing.

Endpoints of application programming interface:

° Produces SQL statements for /nl-to-sql/ based on natural language queries. Details on the database
schema provided by /schemas/ help to ensure query accuracy.
° CORS management helps to enable safe connections between frontend and backend systems.

3.4 LANGCHAIN AND GOOGLE GEMINI-PRO INTEGRATION

The system transforms user queries into SQL by combining Google Gemini-Pro, an advanced language
model able to understand natural language and generate SQL statements, with LangChain. Google Gemini-
Pro: Why? understands the connections between database tables and can control complicated linguistic
structures. writes correct SQL queries with little human involvement.

To guarantee the accuracy and executability of produced SQL queries, the system includes a strong query
validation tool. Before running any SQL statements, the system checks that user queries correspond with
current tables and columns by comparing them to specified database schemas. This reduces problems
brought on by faulty schemas. While maintained in a dictionary, established database schemas are used to
match user queries with legitimate tables and columns using regular expressions (regex). Should a query
mention a non-existent table or field, the system sends an error notice. The query "Show me all products”
is legal if the products table exists; the query "List all employees" is invalid if the employees table is missing.
The system workflow is set up as follows: From the frontend to the FastAPI backend, an API sends the
user's natural language query. LangChain creates the relevant SQL query using Google Gemini-Pro after
examining the question. The system then checks the SQL query against the specified schema; if it passes,
the user sees the SQL statement. Without compliance, the user gets an error notice and a request to rephrase
their question. Our approach, therefore, simplifies database interactions by removing the need for direct

IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b734

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
SQL knowledge and enabling users to access data via natural language queries. By means of LangChain,
Google Gemini-Pro, and FastAPI, the solution guarantees quick, precise, and safe SQL generation, therefore
streamlining database administration for non-technical users.

4. DATASET

The dataset used by this system consists of structured relational database tables meant to facilitate the
creation and validation of natural language to SQL (NL2SQL) queries. It consists of many tables with
specified schemas—including customers, orders, products, and transactions—to fit various query situations.
Every database contains pertinent characteristics including order_id, customer_id, product_id, order_date,
and total_amount.

Some of the characteristics in the customers table include: customer 1D, name, email, and location. Since it
mimics real business applications, natural language queries can yield significant conclusions from the
curated dataset. SQL queries that validate tables and columns using dictionary data are valid. A lexicon of
facts strengthens questions. This lets the system check tables and columns before generating SQL queries.

This structured dataset and LangChain-enabled system with Google Gemini-Pro ensure accurate and
efficient SQL query conversion from user inputs. Since the dataset may be extended by adding tables and
fields, the system can be adapted to alternative database configurations.

5. METHODOLOGY

Our NL2SQL solution simplifies database operations by translating common inquiries into SQL queries. It
handles everything from comprehending the query to delivering correct results using Google Gemini-Pro
and LangChain.

They key points it focuses on are: -

° The system can grasp the database after data preparation.

° NLP interprets questions like humans.

) Before running, query validation verifies the resulting SQL.
° Executing queries retrieves data without manual coding.

The backend uses FastAPI for smooth processing while the frontend uses React.js to create a clean,
interactive interface. The result? Easy data querying without SQL knowledge.

Complex searches including multi-table joins, groupings, and layered queries are accurately translated with
Google Gemini-Pro. This allows the system to support many database designs.

The React.js frontend interface allows users enter inquiries in simple English. The user interface has fields
for input, buttons and and a responsive display. React's state management ensures that the interface responds
rapidly to backend responses to user queries. FastAPI backend and frontend data flow is smooth with
RESTful API endpoints. Bootstrap, Tailwind, and other CSS frameworks improve software visuals and
responsiveness.

FastAPI, a high-performance framework selected for its asynchronous characteristics and built-in data
validation capabilities via Pydantic, handles the backend processing. Specifically for schema validation, the
backend exposes important API endpoints; for query processing, /nl-to-sql/. From the backend, a natural
language question is sent to the LangChain-driven NLP model, which then interacts with Google Gemini-
Pro to produce the relevant SQL query. This guarantees query accuracy and contextual awareness. To
preserve query integrity and avoid execution problems, the system checks the query before sending back
the SQL statement. A predefined schema dictionary keeps knowledge on present tables and their related
columns. The use of regular expressions helps to match user queries to real database and column identifiers.
The system flags erroneous requests and displays the relevant error message whenever a user requests data
from a not present database. SQL queries like " Display every consumer who made an order" are validated
against order databases and customers tables before being created.

IJCRT2504211] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b735

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
After validation, the database query is conducted. The solution supports PostgreSQL, MySQL, and SQL.ite
to ensure database compatibility. In complex queries with filters, joins, or aggregations, the system
optimises performance by carefully designing the SQL statement. When execution or syntax errors occur,
the system provides valuable error messages to maximise search results.

Frontend (React/Next.js)

User Interface

!

Query Form

HTTP POST
Backend (FastAPI) -
REST API /
// 1 JSON Response
—_—
[
I
Security Layer Results Display
SQL Query Schema Validator
Valid Query \
LLM Service Validate Against
Generate SQL
\\ {External Services -w
Google Gemini Pro Database Schemas

Figure 3. Architecture Diagram

6. RESULTS

The Natural Language Processing to MySQL (NL2SQL) query method was accurate, useful, and effective
after testing and deploying it on numerous datasets. It accurately translated conversational queries into SQL.
It could handle simple questions like "Show us all customers who made an order," as well as complex ones
using joins, aggregations, and queries with subqueries nested within other queries. Tested against particular
database schemas, Google Gemini-Pro running via LangChain generated SQL queries over 90% accuracy.
Furthermore, unlike other query-generation techniques, the query validation system ceased running false or
invalid SQL queries. By more than 85%, this reduced execution mistakes.

The system exhibited fast response with an average query processing time of under 1.5 seconds. FastAPI's
asynchronous request processing lets you concurrently handle several user requests without a loss in speed.
Testing on MySQL, PostgreSQL, and SQL.ite databases validated the system's cross-database compatibility.
Furthermore, users could engage with the system because of the React.js interface's seamless user
experience without require of SQL knowledge. Comments from testers indicated a notable increase in data
access and usability, particularly for non-technical users unfamiliar with SQL syntax.

IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b736

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

The system's dependability depended on the query validation module. With an error detection accuracy over
95%, it effectively found and rejected faulty queries lacking the required table or field in the schema. The
system gave users real-time feedback by recommending different query formulations when the first input
could not be directly converted into SQL. By lowering the amount of failed searches, this improvement
increased the overall usability of the system. The results show how well the suggested NL2SQL system
using Google Gemini-Pro and LangChain reconciles structured database queries with natural language. By
means of query accuracy, execution efficiency, and user interface accessibility, the method improves
database access for non-technical users. Its relevance in practical situations is increased by the inclusion of
dynamic user interface, real-time recommendations, and query validation. Future improvements might aim
to maximize efficiency and usability by including voice questions, broadening language support, and
enhancing model interpretability.

USER INTERFACE

Speak Your Query, Get Instant SQL!

Effortlessly convert natural language into SQL queries with LangChain’s intelligent LLM-powered framework.

(Enteryournatural anguage Database; salos db v)

Figure 4. User Interface

Giving NL Prompt

Speak Your Query, Get Instant SQL!

Effortlessly convert natural language into SQL queries with LangChain’s intelligent LLM-powered framework.

(Whatare the names of all customers? Database: sales b v)

Figure 5. Giving Natural Language Prompt

IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b737

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Query Result

Speak Your Query, Get Instant SQL!

Effortlessly convert natural language into SQL queries with LangChain’s intelligent LLM-powered framework,

(What are the names of all customers? Database: sales db)

GetSQL.

SELECT name
FROM customers;

Figure 6. Query results

7. CONCLUSION

Google's Gemini-Pro, LangChain, and FastAPI, which help the planned NL2SQL system simplify database
queries for non-technical users. Its linguistic processing features translate dialogue requests into SQL with
more than 90 precision and eliminate execution errors with an effective query validation system. The
React.js frontend makes data retrieval easy, and the system integrates with PostgreSQL, MySQL, and
SQL.ite for cross-database interoperability, immediate feedback and query optimisation boost dependability
and reduce failed searches. These results show that the system can democratise data access, simplify
decision-making, and improve usability for non-SQL users. Future improvements will focus on voice-based
searches, multi-language support, and model interpretability.

8. ACKNOWELDGEMENT

Authors acknowledge the support from CMR University for providing the facilities and resources for
carrying out this research work. We also extend our gratitude to the reviewers for their valuable suggestions
and constructive feedback.

9. REFERENCES

[1] X. Zhang, F. Yin, G. Ma, B. Ge and W. Xiao, "M-SQL.: Multi-Task Representation Learning for Single-
Table Text2sql Generation,” in IEEE Access, vol. 8, pp. 43156-43167, (2020), doi:
10.1109/ACCESS.2020.2977613.

[2] Ayush Kumar, Parth Nagarkar, Prabhav Nalhe, and Sanjeev Vijayakumar, “Deep Learning Driven
Natural Languages Text to SQL Query Conversion: A Survey,” Journal of latex class files, vol. 14, 0. 8,
August 2021.

[3] Dr. Ch Mallikarjuna, Sravan Reddy, P. Chakradhar, P. Abhinay, S. Pavan Kumar, “Review Paper on
Text-To-SQL Generation Systems” © 2024 [JCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882.

[4] Youssef Mellah, Abdelkader Rhouati, ElI Hassane Ettifouri, Toumi Bouchentouf and Mohammed
Ghaouth Belkasmi, “SQL Generation from Natural Language: A Sequence to Sequence Model Powered
by the Transformers Architecture and Association Rules” on Research Gate.

[5] Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, and Toby Jia-Jun Li, “Insights into Natural
Language Database Query Errors: From Attention Misalignment to User Handling Strategies,” Vol. 1, No.
IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b738

http://www.ijcrt.org/

www.ijcrt.org © 2025 1JCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
1, Article. Publication date: February 2023, arXiv:2402.07304v1 [cs.HC] 11 Feb 2024.

[6] Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John Drake, and Qiaofu
Zhang, “Natural SQL: Making SQL Easier to Infer from Natural Language Specifications”,
arXiv:2109.05153v1 [cs.CL] 11 Sep 2021.

[7] Stavroula Eleftherakis, Orest Gkini, and Sanjeev Vijayakumar, “Let the Database Talk Back: Natural
Language Explanations for SQL,” CEUR-WS.org/vol-2929/paper-3.

[8] Muhammad Shahzaib Baig, “Natural Language to SQL Queries: A Review” Article February 2022
DOI: 10.33411/1J1ST/202204011, See discussions, stats, and author profiles for this publication at:
https://www.researchgate.net/publication/379839268.

[9] Lu Zeng, Sree Hari Krishnan Parthasarathi, and Dilek Hakkani-Tur. 2023. "N-best hypotheses
reranking for text-to-SQL systems.” In 2022 IEEE Spoken Language Technology Workshop (SLT). IEEE,
663-670.

[10] Majhadi Khadija and MACHKOUR Mustapha,“CHAT-SQL:NATURAL LANGUAGE TEXT TO
SQL QUERIES BASED ON DEEP LEARNING TECHNIQUES,” Journal of Theoretical and Applied
Information Technology, ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195.

[11] Georgia Koutrika, Alkis Simitsis, and Yannis E. loannidis. 2010. "Explaining structured queries in
natural language." In ICDE. IEEE, 33.

IJCRT2504211 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b739

http://www.ijcrt.org/
https://www.researchgate.net/publication/379839268
https://www.researchgate.net/publication/379839268
https://www.researchgate.net/publication/379839268
http://www.jatit.org/
http://www.jatit.org/

