
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b731

From Words To SQL: Utilizing Langchain And

Langsmith For Query Generation

1Mithun S R, 2Dheeraj H, 3Gangadhar V, 4Kalmesh M Teli, 5Gyanappa A Walikar
1Department of Computer Science and Engineering

1CMR University, Bangalore, India

Abstract - For people lacking technical knowledge, natural language searching significantly increases data

access. Knowledge of database architecture and the particular language linked with conventional SQL

retrieval techniques could impede the efficient use of data. By combining LangChain and LangSmith, this

project builds an NL2SQL (Natural Language to SQL) framework converting user queries into comparable

SQL statements. Advanced natural language processing (NLP) technologies (Huang et al., 2021) used by

the system allow smooth interactions across several database schemas, management of complicated queries

including joins and aggregations, and exact interpretation of user intent. Given the model's architecture for

generating cross-database code, it is vital to emphasize that the only database backends accessible for

implementation are MySQL, PostgreSQL, and SQLite. By reducing dependence on technical teams, the

proposed approach speeds up decision-making.

Keywords -Natural language processing, LangChain, LangSmith, data democratization, machine

learning, query optimization, SQL query generation

1. INTRODUCTION

A key area of research in database administration and human-computer interaction has been the ability to

transform natural language into SQL queries. Closing the gap between users with little SQL knowledge and

database queries has drawn much attention as databases grow more crucial in many industries. Researchers

have looked at various text-to-SQL conversion techniques—including deep learning, transformer-based

models, and rule-based approaches—to increase accuracy and efficiency [1],[2].

Recently developed algorithms for deep and learning representations have substantially enhanced text-to-

SQL systems. Multi-task representation learning was used to improve SQL formulation for single-table

queries in M-SQL by Zhang et al. [1]. To construct appropriate SQL queries, their research shows that

natural language input syntax and meaning must be understood. Kumar et al. examined transformer-based

and sequence-to-sequence systems for deep learning-based text-to-SQL conversion [2].

Converting natural language to SQL is difficult with sophisticated queries and unclear inputs. The sequence-

to-sequence model by Mellah et al. combines transformer design with association rules to address this.

Aligning the syntax of SQL with natural language inputs improves SQL creation [4]. Ning et al. also

examined natural language database query user errors and found issues with attention misalignment and

user interaction approaches [5]. These experiments underline the need for robust error-handling systems in

text-to-SQL translation.

Multiple text-to-SQL methods have been created to speed up and simplify SQL inference. Gan et al. created

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b732

PlainSQL to simplify database interactions for non-experts by turning simple English commands into SQL

queries [6]. Eleftherakis et al. have presented a new database strategy that generates natural language SQL

query explanations, boosting comprehension and usefulness [7]. These improvements reflect ongoing

database querying user experience improvements.

One more unique key feature of the text-to-SQL systems is the hypothesis reranking. Zeng et al. found that

reranking N-best hypotheses for text-to-SQL models by integrating multiple candidate searches and ranking

them by confidence ratings improved Mysql production reliability [9]. Baig explored ways for transforming

natural language processing to SQL, emphasizing the benefit of improving deep learning models for

efficiency [8]. Integration with text-to-SQL systems has also been considered using chat-based interfaces.

Khadija et al. [10] put up a deep learning-based framework to transform natural language queries into SQL

for conversational artificial intelligence systems. This work moves the larger objective of improving the

accessibility and usability of database interface for non-SQL competent individuals.

Another area of academic research has been the natural language explanation of structured queries. Koutrika

et al. examined techniques to produce natural language explanations of SQL queries [11] to enable users

grasp complex database queries and improve their search criteria. These strategies increase system usability

and user participation by offering simple, quick reasons. All things considered, natural language to SQL

translation is still an active and evolving field with research being done to improve user experience, control

complicated queries, and increase model accuracy. Text-to-SQL systems will benefit from the integration

of supervised learning, sequence-to-sequence designs, and interactive database explanations, leading to

improved results and access [1]– [11].

2. RELATED WORKS

Databases can seem exotic to non-technical users. Naturally Speaking to SQL (NL2SQL) lets people ask

enquiries in basic English (or any additional language) and transforms them into SQL queries. Researchers

have tried everything from rule-based approaches to modern artificial intelligence (AI) to improve this

technology's accuracy and usability.

Zhang, et al. [1] developed M-SQL in 2020 to handle single-table requests by learning many tasks. It

improved query structure understanding and result accuracy with this method. In 2021, Kumar, et al. [2]

evaluated Text2SQL technologies and noted how transformer-based approaches like ChatGPT were

changing the field. At same a period of time Doctor. Ch Mallikarjuna and colleagues [3] examined schema

alignment and sophisticated query creation, emphasizing the importance of context for accurate translations.

In 2024, Mellah et al. [4] suggested an architecture using transformers and association rules to simplify SQL

searches. Ning et al. [5] proposed enhanced attention methods and user guidance to reduce query phrasing

errors in 2023 instead of merely upgrading the tech.

Natural SQL (Gan et al. [6], 2021) demonstrated how semantic understanding might greatly enhance

accuracy, while Eleftherakis et al. [7] examined describing SQL queries in simple terms to make databases

more approachable. Baig [8]'s 2022 assessment neatly summarized the way deep learning and its

transformer have altered NL2SQL, while conceding that specific to the domain applications still present

distinct obstacles.

Zeng, et al. [9] (2023) invented an N-best assumption reranking approach to improve estimates, and Khadija

and Mustapha [10] (2024) created CHAT-SQL, a deep learning-powered real-time NL2SQL system.

Remember Koutrika et al. [11]'s 2010 study showing how simplifying SQL answers could help non-experts

use databases.

All these improvements show that NL2SQL has grown, but it can further improve. The newest large-scale

language models (LLMs) and rapid methods of engineering will be used to integrate LangChain and

LangSmith to render interactions with databases smoother and more intuitive.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b733

3. PROPOSED SYSTEM

We enable customers to ask questions in simple English and immediately turn them into exact SQL queries,

making database interactions easy. We use Google's strong Gemini-Pro model, LangChain, and LangSmith

to:

● Match database schemas to user questions intelligently.

● Correct, executable SQL queries.

● Easy database access with a clean interface.

Nobody needs to learn SQL with this method; anyone can get what information they need through

conversation. The system manages the complexity of technology when users focus on data analysis.

3.1 SYSTEM SUMMARY

This approach lets users ask database questions in natural language. The correct SQL queries are generated

from these inputs and checked against the database schemas. When a user requests, "Display all customers

who placed an order," Figure 1 illustrates how the system generates the following SQL query.

Figure.1. Generated SQL query

By using LangChain, the solution guarantees quick parsing and query creation, therefore enabling SQL

querying for non-technical users.

3.2 FRONT END RUNNING

User interactions with HTML, CSS, and React.js are handled via the online application in an intuitive way.

HTML defines the architecture of the program, including input fields for inquiries and submission buttons.

Frameworks like Tailwind CSS or Bootstrap improve the user interface (UI) with CSS, making it responsive

and aesthetically pleasing across many devices. React.js enables dynamic interactions so users can ask

questions, get SQL responses, and effectively control state changes. Moreover, React.js enables smooth API

integration by dynamically showing the results and forwarding user requests to the backend.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b734

Figure.2. Frontend

3.3 BACKEND API USING FASTAPI

FastAPI, a high-performance framework for API development, drives the backend of the system.

Major FastAPI Features:

● enables asynchronous processing to speed up request handling.

● Pydantic helps to ensure accurate inputs by means of data validation.

● Swagger UI can be used to automatically produce API documentation for simplified diagnostics and

testing.

Endpoints of application programming interface:

● Produces SQL statements for /nl-to-sql/ based on natural language queries. Details on the database

schema provided by /schemas/ help to ensure query accuracy.

● CORS management helps to enable safe connections between frontend and backend systems.

3.4 LANGCHAIN AND GOOGLE GEMINI-PRO INTEGRATION

The system transforms user queries into SQL by combining Google Gemini-Pro, an advanced language

model able to understand natural language and generate SQL statements, with LangChain. Google Gemini-

Pro: Why? understands the connections between database tables and can control complicated linguistic

structures. writes correct SQL queries with little human involvement.

To guarantee the accuracy and executability of produced SQL queries, the system includes a strong query

validation tool. Before running any SQL statements, the system checks that user queries correspond with

current tables and columns by comparing them to specified database schemas. This reduces problems

brought on by faulty schemas. While maintained in a dictionary, established database schemas are used to

match user queries with legitimate tables and columns using regular expressions (regex). Should a query

mention a non-existent table or field, the system sends an error notice. The query "Show me all products"

is legal if the products table exists; the query "List all employees" is invalid if the employees table is missing.

The system workflow is set up as follows: From the frontend to the FastAPI backend, an API sends the

user's natural language query. LangChain creates the relevant SQL query using Google Gemini-Pro after

examining the question. The system then checks the SQL query against the specified schema; if it passes,

the user sees the SQL statement. Without compliance, the user gets an error notice and a request to rephrase

their question. Our approach, therefore, simplifies database interactions by removing the need for direct

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b735

SQL knowledge and enabling users to access data via natural language queries. By means of LangChain,

Google Gemini-Pro, and FastAPI, the solution guarantees quick, precise, and safe SQL generation, therefore

streamlining database administration for non-technical users.

4. DATASET

The dataset used by this system consists of structured relational database tables meant to facilitate the

creation and validation of natural language to SQL (NL2SQL) queries. It consists of many tables with

specified schemas—including customers, orders, products, and transactions—to fit various query situations.

Every database contains pertinent characteristics including order_id, customer_id, product_id, order_date,

and total_amount.

Some of the characteristics in the customers table include: customer ID, name, email, and location. Since it

mimics real business applications, natural language queries can yield significant conclusions from the

curated dataset. SQL queries that validate tables and columns using dictionary data are valid. A lexicon of

facts strengthens questions. This lets the system check tables and columns before generating SQL queries.

This structured dataset and LangChain-enabled system with Google Gemini-Pro ensure accurate and

efficient SQL query conversion from user inputs. Since the dataset may be extended by adding tables and

fields, the system can be adapted to alternative database configurations.

5. METHODOLOGY
Our NL2SQL solution simplifies database operations by translating common inquiries into SQL queries. It

handles everything from comprehending the query to delivering correct results using Google Gemini-Pro

and LangChain.

They key points it focuses on are: -

● The system can grasp the database after data preparation.

● NLP interprets questions like humans.

● Before running, query validation verifies the resulting SQL.

● Executing queries retrieves data without manual coding.

The backend uses FastAPI for smooth processing while the frontend uses React.js to create a clean,

interactive interface. The result? Easy data querying without SQL knowledge.

Complex searches including multi-table joins, groupings, and layered queries are accurately translated with

Google Gemini-Pro. This allows the system to support many database designs.

The React.js frontend interface allows users enter inquiries in simple English. The user interface has fields

for input, buttons and and a responsive display. React's state management ensures that the interface responds

rapidly to backend responses to user queries. FastAPI backend and frontend data flow is smooth with

RESTful API endpoints. Bootstrap, Tailwind, and other CSS frameworks improve software visuals and

responsiveness.

FastAPI, a high-performance framework selected for its asynchronous characteristics and built-in data

validation capabilities via Pydantic, handles the backend processing. Specifically for schema validation, the

backend exposes important API endpoints; for query processing, /nl-to-sql/. From the backend, a natural

language question is sent to the LangChain-driven NLP model, which then interacts with Google Gemini-

Pro to produce the relevant SQL query. This guarantees query accuracy and contextual awareness. To

preserve query integrity and avoid execution problems, the system checks the query before sending back

the SQL statement. A predefined schema dictionary keeps knowledge on present tables and their related

columns. The use of regular expressions helps to match user queries to real database and column identifiers.

The system flags erroneous requests and displays the relevant error message whenever a user requests data

from a not present database. SQL queries like " Display every consumer who made an order" are validated

against order databases and customers tables before being created.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b736

After validation, the database query is conducted. The solution supports PostgreSQL, MySQL, and SQLite

to ensure database compatibility. In complex queries with filters, joins, or aggregations, the system

optimises performance by carefully designing the SQL statement. When execution or syntax errors occur,

the system provides valuable error messages to maximise search results.

Figure 3. Architecture Diagram

6. RESULTS

The Natural Language Processing to MySQL (NL2SQL) query method was accurate, useful, and effective

after testing and deploying it on numerous datasets. It accurately translated conversational queries into SQL.

It could handle simple questions like "Show us all customers who made an order," as well as complex ones

using joins, aggregations, and queries with subqueries nested within other queries. Tested against particular

database schemas, Google Gemini-Pro running via LangChain generated SQL queries over 90% accuracy.

Furthermore, unlike other query-generation techniques, the query validation system ceased running false or

invalid SQL queries. By more than 85%, this reduced execution mistakes.

The system exhibited fast response with an average query processing time of under 1.5 seconds. FastAPI's

asynchronous request processing lets you concurrently handle several user requests without a loss in speed.

Testing on MySQL, PostgreSQL, and SQLite databases validated the system's cross-database compatibility.

Furthermore, users could engage with the system because of the React.js interface's seamless user

experience without require of SQL knowledge. Comments from testers indicated a notable increase in data

access and usability, particularly for non-technical users unfamiliar with SQL syntax.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b737

The system's dependability depended on the query validation module. With an error detection accuracy over

95%, it effectively found and rejected faulty queries lacking the required table or field in the schema. The

system gave users real-time feedback by recommending different query formulations when the first input

could not be directly converted into SQL. By lowering the amount of failed searches, this improvement

increased the overall usability of the system. The results show how well the suggested NL2SQL system

using Google Gemini-Pro and LangChain reconciles structured database queries with natural language. By

means of query accuracy, execution efficiency, and user interface accessibility, the method improves

database access for non-technical users. Its relevance in practical situations is increased by the inclusion of

dynamic user interface, real-time recommendations, and query validation. Future improvements might aim

to maximize efficiency and usability by including voice questions, broadening language support, and

enhancing model interpretability.

Figure 4. User Interface

Figure 5. Giving Natural Language Prompt

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b738

Figure 6. Query results

7. CONCLUSION

Google's Gemini-Pro, LangChain, and FastAPI, which help the planned NL2SQL system simplify database

queries for non-technical users. Its linguistic processing features translate dialogue requests into SQL with

more than 90 precision and eliminate execution errors with an effective query validation system. The

React.js frontend makes data retrieval easy, and the system integrates with PostgreSQL, MySQL, and

SQLite for cross-database interoperability, immediate feedback and query optimisation boost dependability

and reduce failed searches. These results show that the system can democratise data access, simplify

decision-making, and improve usability for non-SQL users. Future improvements will focus on voice-based

searches, multi-language support, and model interpretability.

8. ACKNOWELDGEMENT

Authors acknowledge the support from CMR University for providing the facilities and resources for

carrying out this research work. We also extend our gratitude to the reviewers for their valuable suggestions

and constructive feedback.

9. REFERENCES

[1] X. Zhang, F. Yin, G. Ma, B. Ge and W. Xiao, "M-SQL: Multi-Task Representation Learning for Single-

Table Text2sql Generation," in IEEE Access, vol. 8, pp. 43156-43167, (2020), doi:

10.1109/ACCESS.2020.2977613.

[2] Ayush Kumar, Parth Nagarkar, Prabhav Nalhe, and Sanjeev Vijayakumar, “Deep Learning Driven

Natural Languages Text to SQL Query Conversion: A Survey,” Journal of latex class files, vol. 14, o. 8,

August 2021.

[3] Dr. Ch Mallikarjuna, Sravan Reddy, P. Chakradhar, P. Abhinay, S. Pavan Kumar, “Review Paper on

Text-To-SQL Generation Systems” © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882.

[4] Youssef Mellah, Abdelkader Rhouati, El Hassane Ettifouri, Toumi Bouchentouf and Mohammed

Ghaouth Belkasmi, “SQL Generation from Natural Language: A Sequence to Sequence Model Powered

by the Transformers Architecture and Association Rules” on Research Gate.

[5] Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, and Toby Jia-Jun Li, “Insights into Natural

Language Database Query Errors: From Attention Misalignment to User Handling Strategies,” Vol. 1, No.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b739

1, Article. Publication date: February 2023, arXiv:2402.07304v1 [cs.HC] 11 Feb 2024.

[6] Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John Drake, and Qiaofu

Zhang, “Natural SQL: Making SQL Easier to Infer from Natural Language Specifications”,

arXiv:2109.05153v1 [cs.CL] 11 Sep 2021.

[7] Stavroula Eleftherakis, Orest Gkini, and Sanjeev Vijayakumar, “Let the Database Talk Back: Natural

Language Explanations for SQL,” CEUR-WS.org/vol-2929/paper-3.

[8] Muhammad Shahzaib Baig, “Natural Language to SQL Queries: A Review” Article February 2022

DOI: 10.33411/IJIST/202204011, See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/379839268.

[9] Lu Zeng, Sree Hari Krishnan Parthasarathi, and Dilek Hakkani-Tur. 2023. "N-best hypotheses

reranking for text-to-SQL systems." In 2022 IEEE Spoken Language Technology Workshop (SLT). IEEE,

663–670.

[10] Majhadi Khadija and MACHKOUR Mustapha,“CHAT-SQL:NATURAL LANGUAGE TEXT TO

SQL QUERIES BASED ON DEEP LEARNING TECHNIQUES,” Journal of Theoretical and Applied

Information Technology, ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195.

[11] Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioannidis. 2010. "Explaining structured queries in

natural language." In ICDE. IEEE, 33.

http://www.ijcrt.org/
https://www.researchgate.net/publication/379839268
https://www.researchgate.net/publication/379839268
https://www.researchgate.net/publication/379839268
http://www.jatit.org/
http://www.jatit.org/

