IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Synthesis Of Pyrazoline Series By Mno₂ Assisted Oxidative Cyclization Of Imidazole Phenyl Hydrazone With Olefins Via Nitrile Imine Intermediate

Sathish Kumar B N and Jayashankar B*

Department of Studies & Research in Chemistry, Tumkur University,
Tumkur-572103, India

Abstract: MnO₂ assisted one pot synthesis of imidazole pyrazolines by oxidative cyclization of imidazole phenyl hydrazone with olefins via nitrile imine intermediate. ¹H NMR, ¹³C NMR, IR and elemental analyses characterized the newly synthesized compounds. All the synthesized compounds were evaluated for their antimicrobial activity and were compared with the standard drugs. All the compounds demonstrated moderate antimicrobial activity.

Keywords: Imidazole pyrazolines; Antimicrobial activity; Manganese (IV) oxide (MnO₂).

I. INTRODUCTION

Investigation of simple, facile and efficient reagents for the synthesis of five membered heterocycles is one of the major challenges in organic synthesis. Among all the five membered heterocycles, pyrazoline and imidazole are represents a class of compounds of great importance in biological chemistry. For instance, pyrazoline derivatives possess the biological activities like, antidepressant¹, anticonvulsant² antimicrobial³, analgesic⁴ and antitumour⁵ activities and also serves as human acyl-CoA: cholesterol acyltransferase inhibitors.⁶ In fact, celecoxib a pyrazole derivative is now widely used in the market as anti-inflammatory drug.⁷ Imidazole derivatives are gaining synthetic interest in recent years due to their broad spectrum of biological activities like anti-inflammatory⁸, analgesic⁹, antibacterial¹⁰, antifungal¹¹, antituberculosis¹², anticonvolusant¹³ and potential anticytokine agents¹⁴. 2-*n*-Butyl-4-chloro-5-farmyl-imidazole is a key intermediate for the synthesis of Losartan a nonpeptide angiotensin antagonist, which is an orally active antihypertensive drug¹⁵. Literature studies reveals that pyrazoline^{16,17} were synthesized *via* 1,3-dipolar cycloaddition of aldehyde hydrazone.

1,3-Dipolar cycloaddition reactions are useful tools for constructing biologically potent five membered heterocycles¹⁸. Apart from the various dipolar reagents known, nitrile imines are used in numerous 1,3-dipolar cycloaddition reactions leading to pyrazoles, pyrazolines, pyrazolidines and other heterocyclic compounds¹⁹. Huisgen and co-workers²⁰ first reported the authentic *in situ* generation of nitrile imines by the thermolysis of 2,5-diphenyl tetrazole in the presence of ethyl phenylpropionate and obtained

2,3,5-triphenyl carbethoxypyrazole. Nitrile imines can be generated by photolysis of sydnones²¹ and oxidation of aryl aldehyde hydrazones with lead tetraacetate²², chloramine-T²³ etc. Keigel²³ et al used MnO₂ for the generation of nitrile oxide. In our laboratory we search for the reagents to generate nitrile oxide and nitrile imine from aldoxime and aldehyde hydrazones. Hence it is considered worthwhile to prepare imidazole pyrazolines using 2-n-butyl-4-chloro-(N-substituted)—imidazole substituted phenyl hydrazone with different olefins via 1,3-dipolar cycloaddition reaction of nitrile imine which was generated insitu by Manganese(IV) oxide and screen them for antimicrobial activity. The present communication deals with the synthesis of a series imidazole pyrazolines and studies their antimicrobial activity. In conclusion 4, 5-dihydro -3- (substituted - imidazole) – 5 - substituted-1-phenyl-1H-pyrazoline derivatives were synthesized and their antimicrobial activity have been evaluated. Compounds 4d and 4e shows significant inhibition, remaining compounds demonstrated potent to moderate antimicrobial activity.

¹H NMR spectra were recorded on a Bruker AM 300 MHz spectrometer using CDCl₃ as solvent and tetramethylsilane as internal standard. ¹³C NMR spectra were measured on Jeol 400 (100MHz) instrument. The chemical shifts are expressed in δ and following abbreviations were used: s = singlet, d = doublet, t = triplet and m = multiplet. Infrared (IR) spectra were measured on Shimadzu 8300 spectrometer. Elemental analyses were obtained on a Vaio-EL intrument. Thinlayer chromatography (TLC) was done with precoated silica gel G plates using benzene-ethylacetrate as eluent.

Antimicrobial activity

II Experimental

All the synthesized compounds were evaluated for antimicrobial activity by the disc diffusion method²⁶ and microdilution method²⁷. Five bacteria and five fungal species were used as the antimicrobial test strains namely: *Bacillus substilis, Escherichia coli, Pseudomonas fluorescens, Xanthomonas campestris pvs, Xanthomonas oryzae, Aspergillusniger, Aspergillus flavus, Fusarium oxysporium, Trichoderma species*

and Fusarium monaliforme. Streptomycin and tetracycline were used as standard drugs against bacteria and nystatin was used against fungi. In all the determinations tests were performed in triplicate and the results were taken as a mean of at least three determinations.

Synthesis of 4,5-dihydro-3-(substituted-imidazole)-1,5-diphenyl-1H-pyrazoline (4a)

A mixture of 2 (1.0 g, 2.13 mmol), 3a (0.23 g, 2.2 mmol) and MnO₂ (0.2g, 2.3 mmol) in ethanol (20 mL) was warmed on a water bath for 2-3 h. TLC monitored the progress of the reaction. After completion of the reaction the solvent was evaporated in vacuum. The residual mass was extracted into ether (25 mL), washed successively with water (2 x 20 mL), brine solution (2 x 15 mL) and dried over anhydrous sodium sulphate. Evaporation of the solvent afforded crude oily substance, which was purified by column chromatography using benzene-ethylacetate (8:1) as eluent to give the product as thick oil (0.68 g, 57%).

- 4,5-dihydro-3-(substituted-imidazole)-5-methyl-1,5-diphenyl-1H-pyrazoline (**4b**): Obtained from **2** (1.0 g, 2.13 mmol), **3b** (0.25 g, 2.12 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.88 g, 70%).
- 4,5-dihydro-3-(substituted-imidazole)-1-phenyl-1H-pyrazoline-5-carbonitrile (4c): Obtained from 2 (1.0 g, 2.13 mmol), 3c (0.12 g, 2.20 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.7 g, 63%).
- 5-(Chloromethyl)-4,5-dihydro-3-(substituted-imidazole)-1-phenyl-1H-pyrazoline (**4d**): Obtained from **2** (1.0 g, 2.13 mmol), **3d** (0.17 g, 2.23 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.73 g, 63%).
- 5-(bromomethyl)-4,5-dihydro-3-(substituted-imidazole)-1-phenyl-1H-pyrazoline (4e): Obtained from 2 (1.0 g, 2.13 mmol), 3e (0.26 g, 2.14 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.70 g, 61%).
- 4,5-dihydro-3-(substituted-imidazole)-1-phenyl-1H-pyrazol-yl)methanol (4f): Obtained from 2 (1.0 g, 2.13 mmol), 3f (0.125 g, 2.15 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.65 g, 56%).
- 4,5-dihydro-3-(substituted-imidazole)-1-phenyl-1H-pyrazol-5-yl acetate (4g): Obtained from 2 (1.0 g, 2.13 mmol), 3g (0.185 g, 2.15 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.65 g, 60%).
- 4,5-dihydro-3-(substituted-imidazole)-1-phenyl-1H-pyrazol-5-yl propionate (4h): Obtained from 2 (1.0 g, 2.13 mmol), 3h (0.215 g, 2.15 mmol) and MnO₂ (0.2 g, 2.3 mmol) as thick oil (0.73 g, 64%).

III Results and Discussion

The general synthetic pathway discussed hereafter is depicted in the Scheme. farmyl function Compound 1 was converted into the phenylhydrazone 2. When oxidative dehydrogenation of 2 by MnO₂ afforded nitrile imine, which was *in situ* trapped by the different olefins 3 (a-h) under refluxing condition in ethanol. Thus produced compound was identified by NMR spectroscopy and elemental analyses as 4,5-dihydro-3-(substituted imidazole)-5-substituted-1-phenyl-1*H*-pyrazoline 4(a-h) in good quality and yield. The starting substrate 2-n-butyl-4-chloro-(N-substituted)-imidazole-5-carbaldehyde 1 was prepared according to literature procedure²⁴. Imidazole aldehyde phenylhydrazone was prepared by known procedure²⁵.

Antimicrobial activity

Antimicrobial activity of all the compounds was shown in **Table 1** and **2.** Among the series of synthesized compounds, **4d** and **4e** shown better inhibition. Remaining compounds shown moderate inhibition. The better inhibition shown by **4d** and **4e** may be due to the presence of chloro and bromo group in the compound.

Table 1. Minimal inhibitory concentration in μg mL⁻¹ and Inhibitory zone in (diameter) mm of the synthesized compounds against tested bacterial strains by micro dilution method and disk diffusion method respectively

Compound	Bacillus		Escherichia		Pseudomonas		Xanthomonas		Xanthomonas	
	substilis		coli		fluorescens		campestris pvs		oryzae	
4a	22μg	8mm	25μg	13mm	23μg	16mm	24µg	11mm	23μg	12mm
4b	23μg	10mm	22μg	12mm	25µg	14mm	21µg	11mm	24μg	10mm
4c	20µg	13 <mark>mm</mark>	18µg	13mm	21µg	17mm	18µg	14mm	23μg	12mm
4d	18µg	15 <mark>mm</mark>	12µg	14mm	14µg	15mm	24µg	10mm	11µg	10mm
4e	18µg	12 <mark>mm</mark>	14µg	14mm	13µg	16mm	12µg	11mm	14µg	12mm
4f	23μg	8mm	22µg	14mm	28µg	13mm	26µg	12mm	23μg	10mm
4g	23μg	8mm	22µg	14mm	2 6μg	13mm	22µg	10mm	23μg	12mm
4h	23µg	8mm	21µg	14mm	29µg	13mm	24µg	11mm	22μg	11mm
Streptomycin	19µg	8mm	13µg	14mm	12μg	13mm	12	-		_
Tetracycline	-	- (-	-	3	- \	9µg	12mm	13µg	12mm

Table 2. Minimal inhibitory concentration in μg mL⁻¹ and Inhibitory zone in (diameter) mm of the synthesized compounds against tested fungal strains by micro dilution method and disk diffusion method respectively

Compound	<u>Asperg</u> illus		Aspergillus		Fusarium		Trichoderma		Fusarium	
	niger		flavus		oxysporium		species		monalifome	
4a	18µg	8mm	18µg	9mm	15µg	10mm	24μg	12mm	13µg	11mm
4b	19µg	7mm	18µg	7mm	17µg	11mm	21µg	13mm	14µg	09mm
4c	16µg	8mm	18µg	10mm	12µg	14mm	18µg	14mm	11µg	12mm
4d	15µg	9mm	13µg	12mm	10µg	14mm	24μg	10mm	11µg	12mm
4e	16µg	9mm	14µg	11mm	10µg	15mm	12µg	11mm	14µg	12mm
4f	20μg	8mm	20µg	7mm	16µg	16mm	26μg	16mm	13µg	10mm
4g	20µg	7mm	22μg	8mm	22µg	22mm	22μg	10mm	23μg	12mm
4h	22μg	8mm	19µg	10mm	24μg	20mm	24μg	12mm	22μg	11mm
Nystatin	15µg	8mm	13µg	8mm	14µg	11mm	11µg	15mm	10µg	12mm

Spectral analysis of compounds

Compound 4a: ¹H NMR CDCl₃: δ 0.94 (t, 3H, CH₃), 1.34 (m, 2H, CH₂), 1,66 (m, 2H, CH₂), 2.57 (t, 2H, CH₂), 3.34 (dd, *J*=6.2, 1H, 4-H), 3.42 (dd, 1H, *J*=6.2, 4-H), 5.17 (dd, 1H, *J*=2.0, 5-H), 5.02 (s, 2H, CH₂), 6.62-7.10 (m, 5H, ArH), 7.18-7.37 (m, 4H, ArH), 7.42-7.65 (m, 4H, ArH), ¹³C NMR CDCl₃: δ 14.1 (C), 23.1 (C), 26.7 (C), 33.2 (C), 39.5 (C), 53.2 (C), 104.7 (C), 113.5 (2C), 115.9 (C), 117.7 (C), 122.2 (C), 126.3 (C), 126.8 (C), 127.2 (2C), 127.8 (2C), 128.4 (C), 128.7 (4C), 129.7 (4C), 132.9 (C), 133.8 (2C), 135.4 (C), 142.7 (C), 143.4 (C), 143.8 (C), 148.6 (C), 156.1 (C). Anal.Calcd. For C₃₆H₃₂ClN₅; C, 75.84; H, 5.66; N, 12.28; Found: C, 75.85, H, 5.67, N, 12.28%.

Compound 4b: ¹H NMR CDCl₃: δ 0.96 (t, 3H, CH₃), 1.36 (m, 2H, CH₂), 1.62 (s, 3H, CH₃), 1.65 (m, 2H, CH₂), 2.58 (t, 2H, CH₂), 3.32 (s, 2H, 4-CH₂), 5.10 (s, 2H, CH₂), 6.64-7.06 (m, 6H, ArH), 7.13-7.19 (m, 6H, ArH), 7.38-7.68 (m, 6H, ArH). ¹³C NMR CDCl₃: _ 14.2 (C), 23.2 (C), 26.8 (C), 30.1 (C), 33.4 (C), 41.4 (C), 47.3 (C), 56.2 (C), 104.6 (C), 113.5 (2C), 115.9 (C), 117.8 (C), 122.2 (C), 126.2 (C), 126.2 (C), 126.6 (2C), 127.7 (2C), 128.4 (3C), 128.7 (C), 129.9 (4C), 132.9 (C), 133.4 (C), 133.8 (C), 135.4 (C), 142.7 (C), 143.8 (C), 144.4 (C), 148.3 (C), 156.3 (C). Anal.Calcd. For C₃₇H₃₄ClN₅; C, 76.08; H, 5.87; N, 11.99; Found: C, 76.10, H, 5.86, N, 11.98%.

Compound 4c: ¹H NMR CDCl₃: δ 0.94 (t, 3H, CH₃), 1.33 (m, 2H, CH₂), 1,64 (m, 2H, CH₂), 2.55 (t, 2H, CH₂), 3.37 (dd, 1H, *J*=6.0, 4-H), 3.40 (dd, 1H, *J*=6.0, 4-H), 5.19 (dd, 1H, *J*=3.6, 5-H), 5.00 (s, 2H, CH₂), 6.60-7.08 (m, 5H, ArH), 7.16-7.32 (m, 4H, ArH), 7.40-7.65 (m, 4H, ArH), ¹³C NMR CDCl₃: δ 14.2 (C), 23.0 (C), 25.7 (C), 32.6 (C), 33.5 (C), 40.8 (C), 41.1 (C), 104.7 (C), 113.7 (2C), 115.9 (C), 116.6 (C), 117.8 (C), 122.3 (C), 126.3 (C), 127.9 (2C), 128.5 (C), 128.8(C), 129.7 (4C), 132.8 (C) 133.6 (2C), 135.4 (C), 142.7 (C), 144.0 (C), 148.5 (C), 156.7 (C). Anal.Calcd. For C₃₁H₂₇ClN₆; C, 71.73; H, 5.24; N, 16.19. Found: C, 71.73; H, 5.23; N, 16.19 %.

Compound 4d: ¹H NMR CDCl₃: δ 0.98 (t, 3H, CH₃), 1.35 (m, 2H, CH₂), 1,66 (m, 2H, CH₂), 2.57 (t, 2H, CH₂), 3.32 (dd, 1H, *J*=6.4, 4-H), 3.37 (dd, 1H, *J*=6.4, 4-H), 3.46 (dd, 1H, *J*=4.0, CH₂Cl), 3.70 (dd, 1H, *J*=4.0, CH₂Cl), 4.98 (s, 2H, CH₂), 5.10 (m, 1H, 5-H), 6.58-7.08 (m, 5H, ArH), 7.16-7.38 (m, 4H, ArH), 7.42-7.65 (m, 4H, ArH), ¹³C NMR CDCl₃: δ 14.2 (C), 22.8 (C), 26.0 (C), 33.2 (C), 34.6 (C), 40.7 (C), 52.4 (C), 53.4 (C), 104.7 (C), 113.6 (2C), 116.0 (C), 117.5 (C), 122.2 (C), 126.3 (C), 127.8 (2C), 128.4 (C), 128.8 (C), 129.7 (4C), 132.4 (C), 133.5 (2C), 135.4 (C), 142.5 (C), 144.0 (C), 148.4 (C), 156.4 (C). Anal.Calcd. For C₃₁H₂₉Cl₂N₅; C, 68.63; H, 5.39; N, 12.91. Found: C, 68.64; H, 5.38; N, 12.93 %.

Compound 4e: ¹H NMR CDCl₃: δ 0.95 (t, 3H, CH₃), 1.32 (m, 2H, CH₂), 1,63 (m, 2H, CH₂), 2.54 (t, 2H, CH₂), 3.30 (dd, 1H, *J*=6.6, 4-H), 3.35 (dd, 1H, *J*=6.6, 4-H), 3.42 (dd, 1H, *J*=3.2, CH₂Br), 3.68 (dd, 1H, *J*=3.2, CH₂Br), 5.16 (m, 1H, 5-H), 4.98 (s, 2H, CH₂), 6.50-7.08 (m, 5H, ArH), 7.12-7.36 (m, 4H, ArH), 7.42-7.65 (m, 4H, ArH), ¹³C NMR CDCl₃: δ 14.2 (C), 22.6 (C), 26.0 (C), 33.2 (C), 35.9 (C), 36.6 (C), 39.2 (C), 40.5 (C), 54.4 (C), 104.7 (C), 113.6 (2C), 116.0 (C), 117.4 (C), 122.0 (C), 126.2 (C), 127.8 (2C), 128.4 (C), 128.7 (C), 129.7 (4C), 132.5 (C), 133.5 (C), 135.4 (C), 142.6 (C), 143.8 (C), 148.2 (C), 155.4 (C). Anal.Calcd. For C₃₁H₂₉BrClN₅; C, 63.43; H, 4.98; N, 11.93. Found: C, 63.45, H, 4.98, N, 11.91 %.

Compound 4f: ¹H NMR CDCl₃: δ 0.96 (t, 3H, CH₃), 1.33 (m, 2H, CH₂), 1,63 (m, 2H, CH₂), 2.56 (t, 2H, CH₂), 3.24 (dd, 1H, *J*=6.2, 4-H), 3.30 (dd, 1H, *J*=6.2, 4-H), 3.61-3.86 (m, 2H, CH₂), 5.02 (s, 2H, CH₂), 5.17 (m, 1H, 5-H), 6.52-7.10 (m, 5H, ArH), 7.16-7.37 (m, 4H, ArH), 7.42-7.65 (m, 4H, ArH). ¹³C NMR CDCl₃:

 δ 14.3 (C), 23.1 (C), 26.0 (C), 33.2 (C), 33.7 (C), 40.9 (C), 53.1 (C), 66.4 (C), 104.5 (C), 113.5 (2C), 115.8 (C), 117.2 (C), 122.2 (C), 126.7 (C), 127.7 (2C), 128.5 (C), 128.9 (C), 129.7 (4C), 132.8 (C), 133.8 (C), 135.4 (C), 142.6 (C), 144.0 (C), 148.4 (C), 156.5 (C). Anal.Calcd. For C₃₁H₃₀ClN₅O; C, 71.05; H, 5.77; N, 13.36; Found: C, 69.99, H, 6.13, N, 13.03%.

Compound 4g: ¹H NMR CDCl₃: δ 0.94 (t, 3H, CH₃), 1.33 (m, 2H, CH₂), 1,66 (m, 2H, CH₂), 2.02 (s, 3H, CH₃), 2.55 (t, 2H, CH₂), 3.37 (dd, 1H, *J*=6.0, 4-H), 3.42 (dd, 1H, *J*=6.0, 4-H), 5.42 (dd, 1H, *J*=4.0, 5-H), 5.04 (s, 2H, CH₂), 6.57-7.06 (m, 5H, ArH), 7.15 (d, 2H), 7.37 (d, 2H, ArH), 7.42-7.67 (m, 4H, ArH), ¹³C NMR CDCl₃: δ 14.3 (C), 20.8 (C), 23.3 (C), 26.7 (C), 33.5 (C), 37.2 (C), 40.6 (C), 78.4 (C), 104.7 (C), 113.6 (2C), 115.9 (C), 117.3 (C), 122.1 (C), 126.6 (C), 127.8 (2C), 128.4 (C), 128.8 (C), 129.6 (4C), 132.7 (C), 133.5 (C), 133.8 (C), 135.4 (C), 142.7 (C), 144.1 (C), 148.3 (C), 155.9 (C), 170.5 (C). Anal.Calcd. For C₃₂H₃₀ClN₅O₂ C, 69.62; H, 5.48; N, 12.69; Found: C, 69.62, H, 5.46, N, 12.70 %.

Compound 4h: ¹H NMR CDCl₃: δ 0.96 (t, 3H, CH₃), 1.14 (t, 3H, CH₃), 1.34 (m, 2H, CH₂), 1,66 (m, 2H, CH₂), 2.32 (q, 2H, CH₂), 2.57 (t, 2H, CH₂), 3.34 (dd, 1H, *J*=6.4, 4-H), 3.42 (dd, 1H, *J*=6.4, 4-H), 5.38 (dd, 1H, *J*=4.0, 5-H), 5.02 (s, 2H, CH₂), 6.52-7.05 (m, 5H, ArH), 7.14-7.37 (m, 4H, ArH), 7.40-7.66 (m, 4H, ArH), ¹³C NMR CDCl₃: δ 10.1 (C), 14.1 (C), 22.9 (C), 25.7 (C), 27.6 (C), 33.7 (C), 37.5 (C), 40.7 (C), 50.1 (C), 78.9 (C), 104.7 (C), 113.6 (2C), 115.8 (C), 117.7 (C), 122.3 (C), 126.7 (C), 127.8 (2C), 128.4 (C), 128.7 (C), 129.7 (4C), 132.8 (C), 133.5 (C), 135.4 (C), 142.7 (C), 144.0 (C), 148.4 (C), 156.8 (C), 173.2 (C). Anal.Calcd. For C₃₃H₃₂ClN₅O₂; C, 70.02; H, 5.70; N, 12.37; Found: C, 70.04, H, 5.70, N, 12.38 %.

IV Acknowledgement

One of the authors (B. Jayashankar) is grateful to Dr. S.L. Gaonkar providing the imidazole aldehyde and Tumkur university for financial support.

V References:

- [1]. Zafer Asim Kaplancikli, Ahmet Ozdemir, Gülhan Turan-Zitouni, Mehlika Dilek Altintop, Ozgür Devrim Can 2010. *Eur J Med Chem.* **45** (9):4383-7
- [2]. Zuhal Ozdemir, Burak Kandilie H and Bulent Gumuse, 2007, Euro. J. Med. Chem., 42, 373.
- [3]. Almahdi, M. M.; Saeed, A. E. M.; Metwally, N. H. 2019, Eur. J. Chem. 10, 30-36 b) Ahmet Ozdemir, Gulhan T-zitouni and Zafer Asim kaplaneikle, 2007, Euro. J. Med. Chem. 42, 403.
- [4]. Aysel Gursoy S, Demirayak, Gultaze capen. et.al. 2000, Euro. J. Med. Chem. 35, 359.
- [5]. Brzozwski Z, Czewski F S and Gdaniec. 2000, Euro. J. Med. Chem. 35, 1053.
- [6]. Tae-Sook Jeong, Kyung Soon Kim, So-Jin An, Kyung-Hyun Cho, Sangku Lee and Woo Song Lee. 2004, *Bioorg. Med. Chem .Lett.* **14**, 2715.
- [7]. Dannahardt G, Kiefer W, Kramer G, Maehrlein S, Nowe U and Fiebich B, 2000, *Eur. J. Med. Chem*, **35**, 499.
- [8]. Slee D H, Romano S J, yu J, Nguyen T N, John J K, Raheja N K. Axe F U, Jones T K and Ripka W C, 2001, J. Med. Chem., 44, 2094.
- [9] Umit U, Nalan G Karaburun and Ihan L, 2001 II Farmaco, 56, 285.

- [10] Elham Zarenezhad, Somayeh Behrouz, Marzieh Behrouz, Mohammad Navid Soltani Rad A, 2024, *J. Molecular Structure*, Vol. 1296, Part 1, **15**, 136839
- [11] Gunnay N S, Ulusoy G N, Ergenc N, Otuk G and Kaya D, 1999, II Farmaco, 54, 826.
- [12]. Gupta P, Hameed S and Jain R, 2004, Euro. J. Med. Chem., 39, 805.
- [13]. Soyer Z, Sultan F, Erol K K and Pabuccuolu V, 2004, II Farmaco, 59, 595.
- [14]. Laufer S A, Striegel H G and Wagner G K, 1993, J. Med. Chem., 45, 4695.
- [15]. Carini D J, Duncia J V, Aldrich P E, Chiu A T, Johnson A L, Pierce M E, Price W A, Santella III J B, Wells G J, Wexler P C, Yoo S W . 1991, *J. Med. Chem.* **34**, 2525.
- [16]. Padmavathi V, Jagan Mohan Reddy B, Chandra Obula Reddy B and Padmaja A. 2005 *Tetrahedron*,61, 2407.
- [17]. Padmavathi V, Venugopal Reddy K, Padmaja A, and Bhaskar Reddy D 2003, *Phosphorus, Sulfur and Silicon*, **178**, 171.
- [18]. Caramella P and Gruinanger P in 1,3-Dipolar Cycloaddition Chemistry, 1984, vol 1, Edited by Padwa A (Wiley Interscience, New york) 337.
- [19] Huisgen R, Seidel M, Sauer J, Mc Farland J M and Walbillich G, 1959, J Org Chem. 24, 892.
- [20] Huisgen R, Seidel M, Wallibillich G and Knupfer H, 1962, *Tetrahedron*, 17, 3.
- [21] Marky M, Meier H, Wunderli A, Hemigarther H, Schmidt H and Hansen H J, 1978, Helv Chem Acta, 61, 1477.
- [22] Gladstone W A, Aylward J B and Norman R O C, 1969, J Chem Soc, (C), 2587.
- [23] A) Lokanath Rai K M and Hassner A, 1989, SynthCommun. 19, 2799. B) Keigiel J, Poplawska M, Jozwik J, Kosior M, Jurczak J. 1999, Tetrahedron, ,40,5605.
- [24] a) Griffiths G J, Hauck M B, Imwinkelried R, Kohr J, Roten C A, Stucky G C, 1999, J. Org. Chem., 64, 8084. b) B. Jayashankara and K M L Rai, 2008, E-J, Chem, 5, 2305-315
- [25] Vogel. A. I., A Textbook of practical Organic Chemistry, 5th Ed; Longman's Green and Co. Ltd: London, 1989; 1258.
- [26] Lemriss S, Marquet B, Ginestet H, Lefeuvre L, Fassouane A and Boiron P, 2003, *J. Mycol.Med*, 13, 189
- [27] Zgoda J R and Porter J R, 2001, Pharmaceutical Biology, 39, 221.