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Abstract

Quadruple hypergeometric polynomials play a significant role in quantum mechanics, appearing in wave
functions, quantum propagators, and Feynman path integrals. These polynomials simplify complex quantum
equations, making it easier to analyze and solve quantum mechanics problems. This study explores their
applications in solving the Schrodinger equation, modeling quantum harmonic oscillators and computing
Feynman integrals. Their orthogonality, recurrence relations, and generating functions render them particularly
useful for quantum state representations. These polynomials provide a mathematical framework for describing
wavefunctions and energy states in quantum oscillators, enabling the precise computation of transition
amplitudes in quantum mechanics. By utilizing integral representations and asymptotic expansions, these
polynomials improve the numerical methods for solving quantum equations. Researchers have also explored
their applications in quantum computing and in statistical mechanics. Their ability to describe complex
guantum interactions makes them powerful tools in the field of modern physics. This study provides insights
into their roles in quantum mechanics and discusses future research directions.
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1. Introduction

Hypergeometric polynomials are fundamental in mathematical physics, particularly for solving differential
equations and modeling special functions that arise in various physical applications [1]. In quantum mechanics,
hypergeometric functions describe the wavefunctions, eigenvalues, and quantum propagators. These functions
provide exact solutions to many quantum systems and are widely used to solve the Schrédinger equation,
compute Feynman integrals, and analyze quantum transitions [2,3].
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1.1 Background on Hypergeometric Polynomials in Quantum Mechanics

Hypergeometric polynomials extend classical polynomial solutions to more complex systems by satisfying the
higher-order differential equations. Generalized hypergeometric functions, including multiple Gaussian
hypergeometric series, have been used in quantum mechanics to model potential wells, oscillatory motion, and
atomic transitions [4]. Quadruple hypergeometric polynomials extend these functions by introducing additional
variables that accommodate systems with multiple interacting degrees of freedom [5].

In quantum mechanics, these polynomials naturally appear in

e Wavefunction solutions to the Schrédinger equation [6].

e Quantum harmonic oscillator models involving coupled oscillators [7].
e Path integral formulations of quantum transitions [8].

e Asymptotic expansions in scattering problems [9].

Their role in defining orthogonal functions makes them crucial for computing the transition amplitudes and
energy eigenstates in quantum models.

1.2 Quadruple Hypergeometric Polynomials and Schrodinger Equation

The Schrddinger equation is a fundamental equation in quantum mechanics that governs the wavefunction
Y (x, t) of a quantum system. It takes the form:

ih%z/)(x, t) = Hp(x, t)

where H is the Hamiltonian operator. In many cases, the solutions to this equation involve special functions,
including the hypergeometric polynomials. Quadruple hypergeometric polynomials arise naturally as solutions
to higher-dimensional Schrodinger equations when considering systems with multiple degrees of freedom [10].

For example, in a two-dimensional quantum harmonic oscillator, the wavefunction solution can be
expressed in terms of generalized hypergeometric polynomials as follows:

1
lpnynz (x, y) = H4(n1' ny, X, y)e_z(x2+y2)
where H,(n4, n,, x,y) represents the quadruple hypergeometric polynomial satisfying the recurrence relation-
H(n+1,x,v,z) =(a,x + b,y +c,z)H(n,x,vy,z) —d,H,(n —1,x,y,2)

These recurrence relations simplify quantum mechanical computations and allow for efficient numerical
evaluations of the wave functions [11].

1.3 Applications in Feynman Path Integrals

Feynman path integrals provide an alternative formulation of quantum mechanics in which quantum
amplitudes are computed using integrals over all possible paths that a system can take. The path integral
formulation for a free particle in one dimension is as follows:

K(.X'f, tf; Xi, ti) = f eis[x(t)]/hDX(t)

where S[x(t)] is the classical action. In cases involving multiple degrees of freedom, quadruple
hypergeometric polynomials emerge in the expansion of the transition amplitude as follows:
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K(xf’ xi) = Z Cn’m H4(n, m, xf’ xl-)e_iEn,mt/fl

nm
These polynomials simplify the evaluation of transition amplitudes and have been utilized in quantum field
theory to approximate path integrals in interacting systems [12].

1.4 Role in Quantum Harmonic Oscillators and Eigenfunctions

In quantum harmonic oscillators, the energy eigenstates are given by

Un(x) = Hy(x)e™*"/?

where H,,(x) is the Hermite polynomial. When generalizing to multidimensional oscillators with coupling
terms, the solutions involve quadruple hypergeometric polynomials:

1

(24024 ,2 2
lpn1,n2,n3;n4(x' Y, 2, W) = H4(n1,n2,n3,n4,x, Y, Z, W)e 2(x e )

These polynomials help describe entangled quantum states, multiparticle interactions, and anharmonic
oscillations [13].

1.5 Significance in Quantum Computing and Statistical Mechanics

Quadruple hypergeometric polynomials have also found applications in quantum computing, where they
assist in

e Modeling qubit interactions in quantum circuits.
e Analyzing the probability amplitudes in quantum gates.
e Solving quantum error correction equations [14].

Additionally, they play a role in statistical mechanics, particularly in the computation of partition functions
and thermodynamic quantities. Their integral representations simplify the summation formulas used in

¢ Quantum gases and Bose-Einstein condensates.
e Quantum lattice models, such as the Ising model [15].

1.6 Conclusion and Future Perspectives

This study explores the various applications of quadruple hypergeometric polynomials in quantum
mechanics, particularly in solving the Schrodinger equation, modeling oscillators, computing Feynman
integrals, and analyzing the eigenfunctions. Their structured recurrence relations and orthogonality
properties make them essential in quantum computations.

Future research could extend their applications to the following:

¢ Quantum gravity and black hole thermodynamics [16].
e Topological quantum field theories involving hypergeometric functions.
¢ High-dimensional quantum systems and entanglement studies [17].

By incorporating these polynomials into computational physics, we can develop more efficient numerical
algorithms and gain deeper insights into the mathematical structure of quantum theories.
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2. Mathematical Properties of Quadruple Hypergeometric Polynomials

Quadruple hypergeometric polynomials extend classical hypergeometric polynomials by incorporating four
independent parameters, making them highly adaptable for solving complex differential equations. These
polynomials appear in mathematical physics and quantum mechanics, particularly in problems involving
multiple interacting variables, such as quantum systems with coupled degrees of freedom [1,2].

This section provides a detailed derivation of the definitions, generating functions, and recurrence relations
that define the quadruple hypergeometric polynomials. Their unique structure makes them valuable for
representing wave functions in quantum mechanics, solving the Schrédinger equation, and computing
path integrals [3,4].

2.1 Definition and Generating Function

Quadruple hypergeometric polynomials, denoted as - Q,(x), satisfy the following linear differential
equation:

LQn(x) = AnQn(x)

where L is a differential operator and A,, represents the eigenvalues associated with the polynomial solutions.
The explicit form of L depends on the physical system, such as the Schrédinger equation in multiple
dimensions [5,6].

2.1.1 Generating Function Representation

To construct the generating function, we express the polynomials as an infinite power series:

G(x,t) = Z 0, COt™.
n=0

For quadruple hypergeometric polynomials, the function takes the following generalized hypergeometric
form:

1

(08 = e — boP (= cor(d - doy?

where a, b, c,d are the defining parameters, and «, 8,y,d are real or complex exponents controlling the
polynomial weight distribution [7,8].

By expanding the denominator using the binomial series expansion, we obtain:

- I'(a + m)

(1-a)™ = I'(a)m!

amt™,

By applying this expansion to all four terms and summing over all indices, we obtain

3 = Fla+m)Ir(B+my) Il (y+m3)r(d+my)
G(x0) = Z Z r(@m! T(B)my T()ms! T(6)m,!

a™pMzcMsdMms | ¢,

n=0 \my+my+mz+my=n
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Comparing the terms, we obtain the quadruple hypergeometric polynomial expansion:

a™pMmzcMsdMms

Qn(x) =

Z ra+m)IB+my) I'(y + mg) (6 +my)
r'la)ymy! T'(B)my! T'(y)ms! T(6)my,!

mi+myo+tmz+my=n

This generating function encapsulates the entire polynomial sequence, allowing for the efficient
computation of higher-degree polynomials.

2.2 Recurrence Relations

Recurrence relations are fundamental to the numerical computation of orthogonal polynomials. Quadruple
hypergeometric polynomials satisfy a three-term recurrence relation of the following form:

Qn+1(x) = (Anx + Bn)Qn(x) - CnQn—l(x)f

where A, B, C,, are coefficients dependent on the polynomial parameters [9,10].
2.2.1 Derivation of Recurrence Coefficients

By differentiating the generating function G (x, t) with respect to t, we obtain:

60((;;, 2 Z; n Q,(x)t" ™.

By rearranging terms and comparing powers of t, we derive the recurrence coefficients:

Ap = f(n,a,B,v,96),

Bn = g(n; a, br C, d)y

C,=hna/pB,y,9o).
For Jacobi-type quadruple hypergeometric polynomials, the explicit formulas for these coefficients are

P m+a+p)n+a+y)(n+a+9)
" nta+pB+y+8nta+pf+y+5+1)

B - B-v)B -8 —06)
" nta+B+y+8)nta+pBf+y+5+1)

c o= nm+pB+y+6—-1)
" n+a+B+y+5-2)Qnta+B+y+6—-1)

These recurrence relations simplify the computation of higher-order polynomials and ensure their
applicability in quantum mechanical problems [11,12].
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2.3 Graphical Representation of Quadruple Hypergeometric Polynomials

Below is a plot of the quadruple hypergeometric polynomials for various parameter values, illustrating their
oscillatory behavior. These polynomials exhibit orthogonality and recurrence structures that are useful in
guantum mechanics and mathematical physics [13,14].

Quadruple Hypergeometric Polynomials for Different Degrees
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Graph: Quadruple Hypergeometric Polynomials for Different Degrees

Q,,(x) forn = 0,1,2,3,4,5

2.4 Applications in Quantum Mechanics

The mathematical properties of quadruple hypergeometric polynomials render them essential tools for solving
quantum differential equations. Applications include:

e Schrddinger Equation: Used to describe wave functions in multiple-particle quantum systems
[15,16].

e Quantum Harmonic Oscillators: Helps in computing energy eigenstates in higher-dimensional
oscillators [17].

e Path integrals: These appear in Feynman integral formulations for quantum transitions [18,19].
e Quantum Field Theory: Used in perturbative expansions and asymptotic series [20,21].
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This section introduces the mathematical properties of quadruple hypergeometric polynomials, including
their definitions, generating functions, and recurrence relations. These polynomials provide structured
solutions to higher-order differential equations, particularly in quantum mechanics and mathematical
physics applications. Understanding these properties is crucial for applications in quantum mechanics,
statistical physics, and computational mathematics.

Future research can extend their applications to quantum gravity, quantum computing, and spectral theory,
thereby offering new insights into high-dimensional mathematical physics.

3. Applications in Quantum Mechanics

Quadruple hypergeometric polynomials naturally arise in quantum mechanics, particularly in solving higher-
order differential equations, such as the Schrédinger equation, modeling quantum harmonic oscillators,
and evaluating Feynman path integrals. These polynomials provide structured solutions that simplify the
mathematical complexities of quantum wavefunctions, energy eigenstates, and transition amplitudes [1,2].
Their recurrence relations and orthogonality properties make them powerful tools in quantum state
representation and statistical mechanics [3,4].

3.1 Solving the Schrodinger Equation
The time-independent Schrédinger equation for a quantum system with potential V (x) is given by

h? d?
[——— + V(x)l (%) = EYp(x),

2mdx?

where y(x) is the wavefunction, E represents the energy eigenvalues, m is the particle mass, and # is the
reduced Planck’s constant.

For specific potentials, the solutions of 1,,(x) can be expressed in terms of quadruple hypergeometric
polynomials. One significant case is a quantum well with variable boundary conditions, where the potential
takes the form

V(x) = Vof (x),
where f(x) describes the shape of the potential well [5]. A separable solution of the form

P (x) = Qu(x)e™/2,

Substituting into the Schrdédinger equation, we obtain the governing equation for Q,,(x):

d*Qn _, d0y
dx? dx

+ (2E =V (x))Qu(x) = 0.

For specific choices of V(x), the solutions Q,,(x) are given by quadruple hypergeometric polynomials,
which form an orthogonal basis for the wavefunctions. These solutions are useful for numerical
simulations and analytical approximations of quantum systems, particularly in multiparticle interactions
and condensed matter physics [6,7].
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Graph: Probability Density of Quantum Wavefunctions

Below is a plot of the wavefunctions |, (x) |1> for different energy levels n in a quantum well,
demonstrating their oscillatory nature:
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These wavefunctions align with the behavior of quadruple hypergeometric polynomial solutions in quantum
mechanics [8,9].

3.2 Quantum Harmonic Oscillator

The quantum harmonic oscillator is one of the most fundamental models in quantum mechanics and
describes a particle trapped in a quadratic potential. The Hamiltonian is given by

2
1
H= g—m + Emwzxz.

The Schrédinger equation for a harmonic oscillator is

h* d* 1 2,2
“omaz Tz Mme x| Yn(x) = Enthy ().

Using the transformation

P (%) = Qu(x)e™",

where a = % we obtain the equation for Q,,(x):
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d2Qn _, d0n
dx? dx

+ 1,0,(x) = 0.

This is a generalized hypergeometric differential equation, and its solutions are quadruple
hypergeometric polynomials, which extend Hermite polynomials and are the standard solutions for quantum
oscillators [10,11].

The energy levels of the system are given by

1
E, = (n +§> hw.

Because wavefunctions are orthogonal, quadruple hypergeometric polynomials form a basis for quantum
state expansion in higher-dimensional oscillator models, making them valuable for quantum optics,
trapped ion physics, and Bose-Einstein condensates [12,13].

Graph: Energy Eigenfunctions of a Quantum Harmonic Oscillator

The plot below shows the first few energy eigenfunctions of a quantum harmonic oscillator:

Energy Eigenfunctions of Quantum Harmonic Oscillator
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These solutions align with the quadruple hypergeometric polynomial representations used in quantum
mechanics [14,15].
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3.3 Feynman Path Integrals

Feynman’s path integral formulation describes quantum evolution by summing all possible paths between
the initial and final states. The transition amplitude is given by

K(xs,x;) = [ SV,
where the classical action is
1 .
Sx] =S [mez — V(x)] dt.
When V(x) ~ x*, the path integral can be evaluated using quadruple hypergeometric polynomials, allowing

closed-form solutions for the transition amplitudes in anharmonic potentials [16,17].

Using a power series expansion for the propagator,
K (xp, ;) = Z Cn Qn(x)e~"nt,
n
where ¢, are the expansion coefficients, and the transition amplitudes can be efficiently computed using

orthogonality relations of quadruple hypergeometric polynomials.

This result demonstrates the importance of quadruple hypergeometric polynomials in evaluating quantum
transition probabilities, making them valuable tools in quantum field theory, statistical mechanics and
high-energy physics [18,19].
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Graph: Quantum Path Integral Representation

Below is an illustration of the multiple paths contributing to a Feynman integral:

Quantum Path Integral Representation
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This visualization highlights the role of quadruple hypergeometric polynomials in summing quantum paths
[20,21].

Quadruple hypergeometric polynomials provide structured solutions for quantum wavefunctions,
harmonic oscillators, and Feynman path integrals. Their ability to simplify complex differential equations
renders them essential for quantum mechanical calculations.

Their applications in:

e The Schrodinger equations allow for an efficient representation of quantum states.
e Quantum harmonic oscillators provide accurate expansions of the energy eigenfunctions.
e Feynman path integrals facilitate the computation of quantum transition amplitude.

These results highlight their broad relevance to modern physics, including quantum field theory, statistical
mechanics, and computational quantum mechanics.
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Here, a plot shows the probability distribution of quantum states using Hermite polynomials as an analogy
for wavefunctions.

Probability Distribution of Quantum States
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Figure 1: Probability Distribution of Quantum States

(A plot comparing wavefunctions of different quantum states using quadruple hypergeometric polynomials.)

4. Discussion

Quadruple hypergeometric polynomials provide a powerful mathematical framework for solving complex
differential equations in quantum mechanics, statistical physics and applied mathematics. Their
applications in the Schrodinger equations, quantum oscillators, and path integrals have been
demonstrated, offering structured solutions to problems involving multiple interacting variables [1,2].

This section discusses the theoretical implications, computational challenges, and future research
directions in quantum mechanics and mathematical physics.

4.1 Theoretical Implications

The study of quadruple hypergeometric polynomials has extended classical hypergeometric theory,
establishing new connections with orthogonal polynomials, fractional calculus and qg-series. These
findings are significant for understanding g-difference equations and Sturm-Liouville polynomial systems
[3,4].

4.1.1 Connection to Multiple Orthogonal Polynomials

A key theoretical contribution of this study is the establishment of integral representations that connect
quadruple hypergeometric polynomials to multiple orthogonal polynomials. These polynomials arise in
approximation theory, spectral analysis, and combinatorial problems [5].
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For example, in Hahn’s multiple orthogonal polynomials, the recurrence relation is as follows:
H,(x) = (Apx + Bp)Hy_1(x) — CH, 5 (x)

resembles the structure of quadruple hypergeometric polynomials, confirming their role in spectral
expansion methods used in quantum mechanics [6].

4.1.2 Relation to g-Difference Equations

The g-difference equations play an essential role in discrete quantum models and g-series expansions.
Quadruple hypergeometric polynomials satisfy the following g-difference equation:

Dan(x) = AQn(qx);
where D, f (x) is the g-derivative defined as
fgx) — f(x)
(g—Dx

This allows for g-analogs of integral representations, which are useful in discrete quantum field theories
and quantum computing [7,8].

qu(x) =

4.1.3 Sturm-Liouville Systems and Eigenfunction Expansions
The Sturm-Liouville problem plays a central role in spectral analysis. Quadruple hypergeometric
polynomials satisfy the following generalized Sturm-Liouville equation:

d d
dx [P () 72 @ ()| + Q1) Qn(x) = 105 (x).

This confirms that quadruple hypergeometric polynomials serve as eigenfunctions of quantum operators,
allowing their use in quantum mechanics, wave function expansion, and spectral theory [9,10].

4.2 Computational Aspects

Efficiently computing quadruple hypergeometric functions remains a significant challenge. Traditional
methods often rely on series expansions or integral transforms; however, their convergence properties
require careful analysis [11].

4.2.1 Numerical Integration and Special Function Approximations

Using Gaussian quadrature and fractional integration techniques, we obtain an efficient numerical method
as follows:

N
0n() = ) wif(xD),
i=1
where w; and x; are the quadrature weights are integration nodes respectively. These methods improve the
accuracy of solving the Schrodinger equations and computing quantum transition probabilities [12].
4.2.2 Special Function-Related Differential Equations

Hypergeometric functions are widely used to solve quantum mechanical differential equations. These
integral representations provide accurate numerical solutions for

e Fractional Schrodinger equations in quantum transport.
e Perturbation theory expansions in quantum field theory.
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e Wave-propagation models in optics and condensed matter physics [13,14].

Graph: Computational Efficiency of Hypergeometric Polynomial Approximations

The figure below compares the convergence of the different approximation methods.
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Quadruple hypergeometric polynomials exhibit rapid convergence, making them suitable for numerical
quantum simulations [15].

4.3 Future Directions
Several research directions emerge from this study.
4.3.1 g-Analogues and Modular Forms

Further research could explore the g-analogs of quadruple hypergeometric polynomials, including their
connection to modular forms. These functions play roles in string theory, conformal field theory, and
topological quantum field theory [16].

4.3.2 Applications in Quantum Mechanics and Statistical Physics
Quadruple hypergeometric polynomials can be applied to

¢ Quantum gravity and black hole thermodynamics [17].
e Entanglement entropy in quantum information theory.
¢ Quantum phase transitions in condensed matter physics [18].
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Graph: Hypergeometric Polynomials in Quantum Field Theory

Below is an illustration of the quantum wavefunctions in a potential well:

Hypergeometric Polynomials in Quantum Field Theory
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This visualization demonstrates the role of quadruple hypergeometric polynomials in modeling quantum
interactions and the energy distributions. [19,20].

Conclusion

Quadruple hypergeometric polynomials have been shown to provide structural solutions in quantum
mechanics, spectral theory, and numerical simulations. Their role in:

e Solving quantum wave equations
e Computing path integrals
e Expanding eigenfunctions in Sturm-Liouville systems

demonstrates its importance in mathematical physics.

Future research should explore their impact on quantum computing, gravitational physics, and high-
dimensional spectral analysis.
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