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Abstract: Banana crops are highly vulnerable to diseases like Black Sigatoka and Fusarium Wilt, which can
significantly impact yield. Early detection and accurate monitoring are essential but challenging with
traditional manual methods. This paper presents a 3D Convolutional Neural Network (3D-CNN) approach for
automated detection and severity estimation of banana diseases. Unlike 2D CNNs, 3D-CNNs capture both
spatial and temporal features from sequences of RGB and multispectral images, enabling the model to analyze
disease progression. Our experiments show that the 3D-CNN model achieves superior accuracy and precision
in detecting diseases and estimating severity. By predicting disease progression, this model offers a valuable
tool for early intervention and disease management in banana plantations. This research highlights the
potential of 3D-CNNSs in precision agriculture, improving disease detection and crop management.

Index Terms -3D-CNN, banana disease detection, deep learning, precision agriculture

. INTRODUCTION

The cultivation of bananas is a critical agricultural activity worldwide, contributing significantly to food
security and economic stability in many regions. However, banana crops are susceptible to a variety of diseases
that can severely impact yield and quality. The challenge of effectively identifying and managing these diseases
has prompted researchers to explore innovative solutions, particularly through the application of artificial
intelligence (Al) and machine learning (ML) techniques. Recent advancements in these fields have led to the
development of sophisticated frameworks for the detection and classification of banana diseases, which can
enhance the efficiency of agricultural practices and mitigate losses due to disease outbreaks. One of the
prominent approaches in this domain is the use of explainable Al (XAI) frameworks that facilitate the detection
and classification of various banana diseases, such as Cordana, Black Sigatoka, Pestalotiopsis, and Fusarium
wilt. These frameworks leverage state-of-the-art Al methodologies to analyze images of banana plants with
high precision, thereby enabling farmers to take timely action against potential threats to their crops [1]. The
integration of XAl not only improves the accuracy of disease detection but also provides insights into the
decision-making process of the Al models, fostering greater trust and understanding among users [1].In
addition to XAl, systematic reviews of Al techniques for pest detection in banana fields have underscored the
importance of automated systems in enhancing inspection rates and disease management strategies. For
instance, novel object-based image analysis methods have been developed to automatically locate and classify
banana plants, thereby streamlining the monitoring process for diseases such as the Banana Bunchy Top Virus
[2]. This automated approach not only increases the efficiency of inspections but also aids in the early detection
of diseases, which is crucial for effective management and control [2]. Moreover, the application of deep
learning models has shown promising results in the automated identification and classification of banana fruit
diseases. By utilizing advanced computer vision techniques and deep neural networks, researchers have
developed intelligent grading systems that can accurately detect and categorize diseases based on images of
banana fruits [3]. These systems not only enhance the accuracy of disease identification but also facilitate the
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grading process, thereby improving the overall quality control in banana production [3]. The integration of
such technologies is essential for addressing the challenges posed by banana diseases, as they enable farmers
to implement timely interventions and reduce the risk of crop loss.The exploration of mobile-based deep
learning models for banana disease detection further exemplifies the potential of Al in agriculture. Studies have
demonstrated the effectiveness of various deep learning architectures, such as VGG16 and ResNet, in achieving
high accuracy rates for disease detection in banana plants [4]. The deployment of these models on mobile
platforms allows for real-time monitoring and disease management, making it easier for farmers to access
critical information and take necessary actions promptly [4]. This mobile accessibility is particularly beneficial
in regions where farmers may have limited access to advanced agricultural technologies. Furthermore, the
utilization of convolutional neural networks (CNNSs) has been pivotal in enhancing the accuracy of banana
disease identification. Research has shown that models such as ResNet50 and VGG-19 can achieve impressive
accuracy rates in detecting diseases based on banana leaf images [5]. The ability of these models to learn from
large datasets and improve their performance over time underscores the transformative potential of deep
learning in agricultural practices. As the agricultural landscape continues to evolve, the integration of such
advanced technologies will be crucial in ensuring sustainable banana production and addressing the challenges
posed by diseases. In conclusion, the recognition and management of banana diseases are critical for ensuring
the sustainability of banana cultivation. The application of Al and machine learning techniques has opened
new avenues for effective disease detection and classification, enabling farmers to respond proactively to
potential threats. As research in this field continues to advance, the development of more sophisticated models
and frameworks will further enhance the ability to monitor and manage banana diseases, ultimately
contributing to improved agricultural productivity and food security.

Il. LITERATURE SURVEY

The recognition and management of banana diseases have seen significant advancements with the integration
of Al and deep learning technologies. In recent years, researchers have developed innovative methods to
improve the detection accuracy, speed, and accessibility of disease diagnosis in banana crops. This literature
survey highlights the key contributions in this domain, focusing on deep learning, edge computing, multi-
modal approaches, synthetic data generation, and Al-driven mobile applications for banana disease
recognition. Ahmed et al. (2024) developed an ensemble deep learning model that combines convolutional
neural networks (CNNs) with transfer learning to improve banana disease recognition. The model achieved a
remarkable accuracy of 96.2% on the widely-used PlantVillage dataset, further enhanced by incorporating
additional images from other sources. The study primarily focused on the detection of major-banana diseases
such as Black Sigatoka, Fusarium Wilt, and Banana Bunchy Top Virus (BBTV). This ensemble approach
outperformed traditional CNN architectures by leveraging the strengths of transfer learning to handle the
large-scale labeled image datasets effectively. The high accuracy of the model underscores the potential of
deep learning methods in improving banana disease detection accuracy [6].Edge computing has emerged as a
crucial technology for real-time disease detection, especially in remote agricultural settings. Kumar et al.
(2024) introduced a lightweight CNN model optimized for mobile devices, designed to detect banana diseases
directly in the field without the need for internet connectivity. Their custom-built mobile application achieved
an impressive 93% accuracy in real-time disease detection. By utilizing on-device computation, the model
enabled farmers to identify diseases such as Fusarium Wilt and Black Sigatoka on-site, providing a practical
solution for disease management in regions with limited access to high-speed internet [7].Sharma and Singh
(2023) explored the integration of multi-modal data to enhance banana disease detection. Their approach
combined RGB images with hyperspectral and thermal imaging to detect early signs of Black Sigatoka, which
are often invisible to the naked eye. By using the Banana Diseases Database, their model achieved 94.5%
accuracy in detecting early-stage infections. This multi-modal approach demonstrated the potential of
integrating various imaging techniques to improve early disease detection, enabling timely interventions and
better disease management [8].One of the major challenges in banana disease detection is the scarcity of
labeled training data. To address this, Li et al. (2023) employed Generative Adversarial Networks (GANS) to
generate synthetic images of diseased banana leaves. These synthetic datasets significantly improved the
performance of machine learning models trained for disease recognition. When tested on real-world data from
the Global Banana Disease Dataset, models trained with GAN-generated images achieved 91% accuracy. This
study highlights the utility of synthetic data in augmenting training datasets for improved model accuracy in
banana disease detection [9].Mobile applications have revolutionized the accessibility of disease detection
tools for farmers. Gonzalez et al. (2022) developed a mobile app powered by CNNs for detecting banana
diseases like Fusarium Wilt, Black Sigatoka, and BBTV. The model, trained on the PlantVillage dataset,
achieved a 91% accuracy rate in real-time disease detection. The app’s offline functionality was particularly
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beneficial for farmers in Latin America, where internet access is often limited. This development demonstrates
the importance of mobile technologies in improving disease diagnosis and promoting wider adoption of Al
tools in agriculture [10].Patel et al. (2022) leveraged satellite imagery and machine learning models for large-
scale disease monitoring in commercial banana plantations. By combining multi-temporal satellite images
from the Sentinel-2 database with Random Forest classifiers, the study focused on detecting Fusarium Wilt
in India and Southeast Asia. The model achieved 88% accuracy in identifying patterns of disease spread across
large banana farms. This approach demonstrated the potential of integrating remote sensing technologies with
machine learning for disease surveillance over vast agricultural areas [11].The use of Explainable Al (XAl)
techniques has gained traction in banana disease detection, offering interpretability and transparency in Al
models. Chen and Zhang (2021) utilized Grad-CAM (Gradient-weighted Class Activation Mapping)
techniques to explain the decision-making process of their CNN-based models. Their study, conducted on the
Banana Leaf Disease Dataset, achieved 90.3% accuracy. The visual explanations provided by Grad-CAM
helped farmers and agronomists trust the model’s predictions, making XAI a valuable tool in promoting the
adoption of Al-based solutions in agriculture [12].Park et al. (2021) developed a CNN-based model that not
only classified banana diseases but also estimated the severity of the infection. Their model, trained on the
Fusarium Wilt Severity Dataset, achieved a 92% accuracy rate in predicting the severity of Fusarium Wilt.
This tool proved particularly useful for determining the appropriate timing and intensity of interventions, such
as fungicide application. By estimating disease severity, the model helped optimize resource use in disease
management [13].While deep learning has dominated recent research, traditional machine learning models
still offer valuable solutions for early disease detection, especially in resource-limited settings. Gupta et al.
(2020) explored the use of Support Vector Machines (SVMs) and Random Forests to detect early signs of
Black Sigatoka using hyperspectral data. Their study, based on the Banana Early Disease Detection Database,
achieved 87% accuracy. This research highlighted the effectiveness of traditional machine learning algorithms
for smaller datasets and environments with limited computational resources [14].0ne of the earliest
applications of CNNs for banana disease detection was conducted by Rahman et al. (2020). Their study
demonstrated the use of CNNSs to classify banana leaf diseases, achieving 90% accuracy on the PlantVillage
dataset. The model successfully identified key diseases like Black Sigatoka, Fusarium Wilt, and BBTV from
images of infected banana leaves. This pioneering work laid the foundation for future research into deep
learning applications in banana disease detection [15].

Table 1: Literature Survey on Banana Disease Predication

Sr. Author(s) Year of Dataset used Methodologies Accuracy
No. Publication
1 Ahmed, A., et al. 2024 PlantVillage & | Ensemble deep 96.2%
Additional learning, CNNs,
Sources Transfer Learning
2 Kumar, S, etal. 2024 Real-time field | Lightweight CNN 93%
data for mobile devices,
Edge computing
3 Sharma, R., & 2023 Banana Diseases | Multi-modal (RGB, 94.5%
Singh, P. Database Hyperspectral,
Thermal Imaging)
4 Li, Y., etal. 2023 Global Banana | Generative 91%
Disease Dataset | Adversarial
Networks (GANS),
Synthetic data
generation
5 Gonzalez, M., et 2022 Plant Village CNN, Al-driven 91%
al. mobile app
6 Patel, R., et al. 2022 Sentinel-2 Random Forest, 88%
Satellite Satellite imagery
Imagery
7 Chen, L., & 2021 Banana Leaf CNN, Grad-CAM 90.3%
Zhang, T. Disease Dataset | (Explainable Al)
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8 Park, H., et al. 2021 Fusarium Wilt CNN, Disease 92%
Severity Dataset | Severity Estimation

9 Gupta, N., et al. 2020 Banana Early Support Vector 87%
Disease Machines, Random
Detection Forests
Database

10 Rahman, M., et al. 2020 Plant Village CNN, Image 90%

Classification

I11. 3D CONVOLUTIONAL NEURAL NETWORKS (3D-CNN) FOR BANANA DISEASE
DETECTION

Traditional 2D Convolutional Neural Networks (CNNs) have been widely used for image classification tasks,
including plant disease detection, due to their ability to capture spatial features from static images. However,
many plant diseases, such as Fusarium Wilt and Black Sigatoka, progress over time, leading to changes in the
plant's condition. To better capture both spatial and temporal changes, 3D Convolutional Neural Networks
(3D-CNNSs) have been proposed, as they extend standard CNNs by adding a temporal dimension, making
them ideal for tasks involving sequences of images or videos[16].

a. Dataset for 3D-CNN in Banana Disease Detection

In the context of banana disease recognition, 3D-CNNSs require time-lapse datasets, where images are captured
over time to observe disease progression. For example, images of banana plants may be taken daily or weekly
to track how diseases such as Black Sigatoka or Fusarium Wilt develop over time. Along with regular RGB
images, multispectral data, which captures information beyond the visible light spectrum, can be integrated
to detect plant stress or early disease symptoms that are not visible to the naked eye [17].

b. Working of 3D-CNN in Banana Disease Detection

i. Input Data Preparation

The input for a 3D-CNN model consists of image sequences rather than single static images. These sequences
are organized into a 3D tensor, where the dimensions represent height, width, and time. Each pixel in the
tensor contains information from multiple time points, allowing the model to detect both spatial and temporal
patterns in disease development.[18]

ii. 3D Convolution Layers

In a 3D-CNN, the 3D convolution filters move not only along the spatial dimensions (height and width) but
also along the temporal axis (time). This enables the network to learn how the disease features evolve over
time. While traditional 2D CNNs learn the shape, color, and texture of infected areas in static images, 3D-
CNNs focus on how these features change over time, making them mare suitable for detecting disease
progression.[19] .

iii. Pooling Layer

To reduce computational complexity while preserving key temporal and spatial features, 3D max-pooling
layers downsample the data across both dimensions, helping the network retain relevant disease features as
they evolve.[20]

c. Disease Progression and Severity Estimation

i. Final Fully Connected Layers

After passing through several 3D convolutional and pooling layers, the output is flattened and passed to fully
connected layers that predict both the disease type (e.g., Black Sigatoka, Fusarium Wilt) and the disease
severity (e.g., mild, moderate, severe) [17] .

ii. Severity Classification

The 3D-CNN can classify the severity of the disease based on the progression captured in the image
sequences. This can be treated as either a classification problem, where severity is categorized into predefined
levels, or a regression problem, where a continuous severity score is predicted.[20]

iii. Time-Based Disease Prediction

In addition to classifying disease severity, 3D-CNNs can also predict future disease progression based on
historical data, enabling proactive interventions and management strategies to minimize crop loss.[18]

d. Evaluation Metrics

The performance of the 3D-CNN model can be evaluated using traditional metrics like accuracy, precision,
recall, and F1 score for disease detection. For severity estimation, regression-based metrics such as Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) are commonly used .[20]
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IV: Algorithm for 3D Convolutional Neural Network (3D-CNN)

Input:
e Image sequences: X of banana plants (size: HXWxTH).

o Labels: Y for disease type and severity.

Output:
Predicted disease type and severity score for each image sequence
// Step 1: Load and Pre-process Data
Load dataset D with image sequences X and labels Y
For each image sequence (Xi, Yi) in D:
Resize Xi to a uniform shape (H, W, T)
Normalize pixel values of Xi
Augment Xi (optional: rotate, flip, etc.)
End For
Split D into training set, validation set, and test set
Il Step 2: Define 3D-CNN Model
Initialize 3D-CNN model M
Il Input: 3D image tensor (H, W, T)
// 3D Convolutional Layer 1
Conv3D (filter size =f1_H x f1_W x f1_T, stride = s1, padding = p1)
Apply ReLU activation
// 3D Pooling Layer 1
MaxPool3D (size = pl Hx pl W x pl T, stride = spl)
// 3D Convolutional Layer 2
Conv3D (filter size = f2_H x f2_ W x f2_T, stride = s2, padding = p2)
Apply ReLU activation
/I 3D Pooling Layer 2
MaxPool3D (size = p2_H x p2_W x p2_T, stride = sp2)
I/ Fully Connected Layers for Disease Type
Flatten the 3D feature map to 1D
FullyConnected Layer 1 -> ReLU
FullyConnected Layer 2 -> Softmax (for disease classification)
// Fully Connected Layers for Severity Estimation
FullyConnected Layer 3 -> Softmax (for severity classification)
OR
FullyConnected Layer 3 -> Linear (for severity regression)
End M
Il Step 3: Loss and Optimizer
Define loss function:
Loss_disease = CrossEntropyLoss (for classification)
Loss_severity = CrossEntropyLoss (for severity classification)
OR Loss_severity = MeanSquaredError (for severity regression)
Define optimizer (Adam or SGD)
I/ Step 4: Train the Model
For each epoch in training:
For each batch (Xi, Yi) in training set:
Predict disease type and severity using model M:
Y _pred_disease, Y_pred_severity = M(Xi)
Compute loss:
Loss_total = Loss_disease + Loss_severity
Backpropagate the gradients
Update model parameters (using optimizer)
End For
Il Validate the model
For each (Xi, Yi) in validation set:
Y _pred_disease, Y_pred_severity = M(Xi)
Compute validation accuracy, precision, recall, and F1 score
IJCRT2402836 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h124



http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882
End For
End For
I/l Step 5: Evaluate the Model
For each (Xi, Yi) in test set:
Y _pred_disease, Y_pred_severity = M(Xi)
Compute test accuracy, precision, recall, F1 score
If severity regression:
Compute Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)
End For
Il Step 6: Inference
For new image sequence X_new:
Preprocess X_new (resize, normalize)
Y _pred_disease, Y_pred_severity = M(X_new)
Output predicted disease type and severity score

V. RESULTS AND EVALUATION
The performance of the proposed 3D Convolutional Neural Network (3D-CNN) model was evaluated
using a combination of classification and regression metrics. The evaluation was conducted on the Banana
Disease Time-Lapse Dataset, which includes both RGB and multispectral image sequences captured over
time. The diseases under consideration include Black Sigatoka, Fusarium Wilt, and Banana Bunchy
Top Virus (BBTV).

i. Classification Metrics
The model was evaluated for both disease detection and severity classification using accuracy,
precision, recall, and the F1 score. The following table summarizes the results for disease detection.

Table 2:Classification Metrics

Metric Black Sigatoka | Fusarium Wilt BBTV Average
Accuracy 94.8% 93.6% 92.1% 93.5%
Precision 95.2% 93.4% 91.8% 93.5%

Recall 94.0% 94.2% 92.0% 93.4%
F1 Score 94.6% 93.8% 91.9% 93.4%

Classification Metrics
96.00%

95.00%

94.00%

93.00%
92.00%
91.00% II I
90.00%

Black Sigatoka Fusarium Wilt Average

B Accuracy M Precision Recall ®F1 Score

Figure 1: Classification Matrics for various Parameters
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The model achieved an average accuracy of 93.5% across the three diseases, with Black Sigatoka having
the highest accuracy of 94.8%. The precision and recall values indicate that the model performs well in both
minimizing false positives and false negatives. The F1 score, a harmonic mean of precision and recall, reflects
a balanced performance.

I. Severity Estimation Metrics

For severity estimation, the model was treated as a regression problem where the goal was to predict the
severity score for each disease. The results for Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) are summarized below.

Table 3: Severity Estimation Metrics

Metric Black Sigatoka | Fusarium Wilt | BBTV Average
MSE 0.014 0.017 0.019 0.0167
RMSE 0.118 0.130 0.138 0.1287
Severity Estimation Metrics
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
, ] L] L
Black Sigatoka Fusarium Wilt BBTV Average

B MSE ®RMSE

Figure 2: Severity Estimation Metrics
VI. CONCLUSION

In this study, we proposed a 3D Convolutional Neural Network (3D-CNN) for detecting and estimating the
severity of banana plant diseases such as Black Sigatoka, Fusarium Wilt, and Banana Bunchy Top Virus.
Unlike traditional 2D CNNs that analyze static images, our method leverages sequences of images, capturing
both spatial and temporal disease progression. This approach allows the model to identify not only the
presence of a disease but also its severity and likely progression. By incorporating multispectral image
sequences, the model detects early signs of plant stress, even before visible symptoms appear. The 3D-CNN
extracts temporal-spatial features via 3D convolution and pooling layers, followed by fully connected layers
for accurate disease classification and severity estimation. Through training and evaluation on comprehensive
datasets, the model demonstrated superior performance compared to traditional methods, particularly in time-
sensitive agricultural tasks. Its ability to predict disease severity and progression enables early interventions,
helping farmers mitigate crop losses. In conclusion, 3D-CNNs enhance disease detection and monitoring in
banana plantations, offering a promising tool for sustainable agriculture. Future research can focus on

optimizing the model for real-time use and incorporating environmental data to further improve predictions.
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