IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Therapeutic Potential Of Lantana Camara: A **Review Of Its Medicinal Applications And Pharmacological Properties**

By Chaitali Barman

Assistant Professor of Zoology, Surendranath College, Kolkata-700009

Abstract

Lantana camara, a widely distributed flowering plant, has garnered increasing interest in medical research due to its diverse phytochemical composition and broad spectrum of biological activities. This review explores the therapeutic potential of *L. camara*, highlighting its antimicrobial, anti-inflammatory, hepatoprotective, antitumor, antifilarial, antioxidant, antifertility, antimutagenic, wound healing, and mosquito repellent properties. We also discuss its pharmacological mechanisms, safety considerations, and future prospects in drug development. Antifilarial activity has been demonstrated through in vitro inhibition of filarial parasites, while its antioxidant capacity is attributed to high levels of flavonoids and polyphenols. The plant's antifertility effects are evident in animal studies, showing disruption of reproductive function. Furthermore, antimutagenic potential has been observed via Ames test assays, suggesting chemopreventive applications. The wound healing capability is supported by studies reporting accelerated tissue regeneration and collagen deposition. Lastly, essential oils from L. camara have shown potent mosquito repellent action comparable to synthetic agents. These findings collectively underscore the pharmacological relevance of L. camara and support further exploration for potential therapeutic applications. The review draws attention to the different aspects of this plants traditional uses, analytical work, pharmacological activities, and toxicology and also the potential uses with future prospects.

www.ijcrt.org

1. Introduction

Medicinal plants have long served as a foundation for traditional and modern therapeutic practices. Among them, *Lantana camara*—a member of the Verbenaceae family—stands out for its wide range of ethnomedicinal uses across Asia, Africa, and the Americas (Sharma et al., 2014). Traditionally considered invasive, this shrub has proven to possess significant medicinal potential, making it a subject of growing scientific interest.

2. Systematic Position of Lantana Camara

Kingdom: Plantae

Phylum: Tracheophyta

Class: Magnoliopsida

Order: Lamiales

Family: Verbenaceae

Genus: Lantana

Species: Lantana camara

3. Plant description

Lantana camara is a flowering shrub. It is native to Central and South America but has become naturalized in tropical and subtropical regions worldwide. The plant typically grows up to 2–3 meters in height and is characterized by its square stems, rough-textured leaves, and clusters of small, brightly coloured flowers that range from red and orange to pink and yellow. It produces fleshy, berry-like drupes that turn from green to black when ripe. While often regarded as an invasive species, *L. camara* has significant medicinal importance due to its bioactive compounds, including terpenoids, flavonoids, and alkaloids (Sharma et al, 2007).

4. Ethnopharmacology of Lantana camara

The ethnopharmacological profile of *Lantana camara* reveals a valuable repository of traditional knowledge supported by pharmacological evidence, justifying its continued exploration in modern phytomedicine (Alice, K. and Asha, S. 2007). Traditionally, it has been extensively used in folk medicine by various cultures for a wide range of ailments. Ethnobotanical surveys have documented the use of different parts of the plant—including leaves, flowers, roots, and stems—in managing health conditions such as respiratory infections, skin diseases, fevers, and gastrointestinal disorders (Sharma et al., 2007; Ross, 2003).

In Indian traditional medicine (Ayurveda), L. camara leaves are commonly applied as poultices for cuts, ulcers, and swellings due to their anti-inflammatory and antimicrobial properties. In some rural communities, leaf decoctions are taken orally for malaria, cough, and fever (Ghisalberti, 2000).

African traditional practitioners have used root extracts for treating asthma, while flower infusions have been used for controlling hypertension and rheumatism (Ibewuike et al., 1997).

The plant is rich in biologically active secondary metabolites, such as terpenoids, flavonoids, alkaloids, and phenolic compounds, which contribute to its diverse pharmacological properties. Lantadenes triterpenoid compounds found primarily in the leaves—are known for their antimicrobial, antiinflammatory, and hepatoprotective effects (Begum et al., 2000). These bioactivities support the traditional uses of the plant and have stimulated research into its potential therapeutic applications.

5. Phytochemical Composition

The pharmacological efficacy of L. camara is attributed to its rich phytochemical profile, including flavonoids, terpenoids, tannins, alkaloids, and essential oils (Sathish et al., 2011). Compounds such as lantadene A and B, ursolic acid, and oleanolic acid have shown promise in preclinical studies due to their anti-inflammatory and cytotoxic properties (Begum et al., 2000). Crude extract of this plant contained 15 naturally occurring phytochemical were experimentally proved, and the name of the phytochemicals are Tannins, flavonoids, terpenoids, saponins, steroid, phlobotannins, carbohydrates, glycosides, alkaloids, coumarins, proteins, emodines, anthraquinones, anthocyanins, leucoanthocyanins (Ganatra, SH and Gurubaxani, SB, 2016).

6. Antimicrobial Activity

Extracts of L. camara have demonstrated inhibitory effects against a wide range of pathogens. Both gram-positive and gram-negative bacteria, including Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, exhibit sensitivity to its leaf and flower extracts (Ravi et al., 2010). Antifungal activity has also been reported against species like *Candida albicans* (Saxena & Sharma, 1999), suggesting potential use in treating skin and mucosal infections.

7. Anti-inflammatory and Analgesic Properties

Several studies have validated the anti-inflammatory and analgesic effects of L. camara. Its extracts suppress the production of pro-inflammatory cytokines and prostaglandins, reducing edema and pain in animal models (Ganjewala et al., 2013). These properties support its traditional use in treating rheumatic conditions and inflammatory disorders.

8. Hepatoprotective Effects

Hepatotoxicity induced by toxins such as carbon tetrachloride and paracetamol has been ameliorated by L. camara extracts in experimental models (Patel et al., 2011). The protective effects are likely mediated through antioxidant mechanisms and stabilization of hepatic cell membranes, pointing toward its use in liver health support.

9. Antitumor and Cytotoxic Activities

Some constituents of L. camara have shown selective cytotoxicity against cancer cell lines, including breast, liver, and colon cancers. Lantadenes, in particular, have demonstrated the ability to induce apoptosis and inhibit tumor cell proliferation (Begum et al., 2000), making them candidates for anticancer drug development.

10. Wound Healing and Dermatological Applications

Topical application of L. camara extracts has been associated with enhanced wound contraction, increased collagen deposition, and faster epithelialization (Ranjan et al., 2012). This makes it a valuable candidate in the development of herbal ointments for treating wounds, burns, and ulcers.

Ranjan et al. (2012) investigated the wound healing activity of L. camara leaf extract in Wistar rats and reported increased wound contraction rate, collagen synthesis, and epithelial regeneration. These effects were attributed to its anti-inflammatory, antimicrobial, and antioxidant constituents, which IN C.P. collectively enhance tissue repair.

11. Antifilarial Activity

Extracts of Lantana camara have demonstrated significant antifilarial activity against the parasitic nematode Setaria cervi, commonly used as a model organism in filariasis research. Singh et al. (2008) found that alcoholic extracts from the plant induced immobilization and death in adult filarial worms, likely due to oxidative stress induction and mitochondrial disruption. These findings indicate the potential of L. camara as a source of lead compounds for antifilarial drug development.

12. Antioxidant Properties

The plant's leaves and flowers are rich in polyphenolic compounds such as flavonoids, which possess strong free radical scavenging properties. Dhanapakiam and Joseph (2009) evaluated the methanolic leaf extract and reported significant DPPH radical scavenging activity, suggesting its potential for preventing oxidative stress-related disorders such as neurodegeneration and cardiovascular diseases.

13. Antifertility Effects

L. camara has shown antifertility effects in animal models. Gupta et al. (2006) administered ethanolic extracts of leaves to female rats and observed a significant reduction in fertility index, implantation sites, and uterine weight. These effects may be attributed to the presence of triterpenoids and sterols, which interfere with hormonal balance and ovulation.

L. camara exhibits spermicidal potential too. Various extracts of *L. camara* leaves were tested for spermicidal activity on human spermatozoa. Methanolic and aqueous extracts showed significant spermicidal effects, indicating potential for contraceptive applications (Bhatia, N. and colleagues, 2016)

14. Antimutagenic Activity

Antimutagenic potential of *Lantana camara* was demonstrated by Shah et al. (2010), who found that leaf extracts reduced mutagenicity induced by sodium azide and 4-nitroquinoline oxide in the Ames Salmonella/microsome assay. This suggests a chemopreventive role of the plant through mechanisms that inhibit DNA damage and mutation.

15. Mosquito Repellent Activity

Essential oils from the leaves of *L. camara* have demonstrated strong repellent activity against various mosquito species, including Aedes aegypti and Anopheles stephensi. A study by Sukumar et al. (1991) showed that *L. camara* oil provided up to 94% protection for several hours, comparable to synthetic repellents like DEET. The activity is primarily attributed to monoterpenes and sesquiterpenes present in the volatile oil.

Studies also suggests that use of this plants active substances like leaves and flower extracts in mosquito control instead of synthetic insecticides could reduce the cost and environment pollution (Alghamdi, A.A. and Basher, N.S.H ,2020).

16. Safety and Toxicological Concerns

Despite its medicinal value, *L. camara* contains lantadenes which can be hepatotoxic in large doses, particularly in grazing animals (Sharma et al., 2007). Human toxicity data are limited, but careful formulation and dosage control are essential for safe therapeutic use. Advances in purification and delivery systems may help mitigate these concerns.

17. Future Perspectives

As interest in plant-based therapeutics grows, *L. camara* stands as a promising candidate for pharmaceutical exploration. Further research should focus on isolating bioactive compounds, elucidating molecular mechanisms, and conducting clinical trials to validate its efficacy and safety in humans (Ganjewala et al., 2013).

18. Conclusion

Lantana camara possesses a diverse array of medicinal properties backed by a growing body of scientific evidence. Its antimicrobial, anti-inflammatory, hepatoprotective, and anticancer potential highlight its value in modern medicine. With continued research and responsible application, this once-overlooked plant may become a valuable tool in the therapeutic arsenal.

References

- 1. Alice K, Asha S. Medicinal Plants Horticulture Sciences. India: New India Publication Agency; 2007. p. 2.
- 2. Alghamdi, A. A., & Basher, N. S. H. (2020). Efficacy of leaves and flowers ethanol extracts of the invasive species Lantana camara Linn as a mosquito larvicidal. International Journal of Mosquito Research, 7(5), 43–47.
- 3. Begum, S., Hassan, S. I., Siddiqui, B. S., & Shaheen, F. (2000). Triterpenoids from the leaves of *Lantana camara. Chemical and Pharmaceutical Bulletin*, 48(6), 994–997.
- 4. Bhatia, N., Sharma, R., Katoch, M., & Chauhan, R. (2016). Evaluation of contact spermicidal potential of Lantana camara L. leaf extracts on human spermatozoa: An in vitro study. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 5(11), 3704–3709. https://doi.org/10.18203/2320-1770.ijrcog20163874
- 5. Dhanapakiam, P., & Joseph, J. M. (2009). Antioxidant properties of Lantana camara leaf extract. Indian Journal of Biochemistry & Biophysics, 46(2), 124–127.
- 6. Ganjewala, D., Sam, S., & Khan, K. (2013). Biochemical and pharmaceutical aspects of *Lantana* camara. *International Journal of Pharmacy and Pharmaceutical Sciences*, 5(3), 93–97.
- 7. Ganatra SH, Gurubaxani SB. Preliminary phytochemical and TLC profiling of Lantana camara leaf extracts. J Chem Pharm Res 2016; 8:614-7
- 8. Ghisalberti, E. L. (2000). Lantana camara L. (Verbenaceae). Fitoterapia, 71(5), 467–486.
- 9. Gupta, R. S., Kachhawa, J. B. S., & Chaudhary, R. (2006). Antifertility effects of methanolic extract of Lantana camara leaves in female albino mice. Pharmacologyonline, 3, 381–389.
- 10. Ibewuike, J. C., Ogundaini, A. O., & Okeke, I. N. (1997). Antimicrobial activity of extracts of Lantana camara. Nigerian Journal of Natural Products and Medicine, 1(1), 39–41.

- 11. Patel, J. R., Tripathi, P., Sharma, V., Chauhan, N. S., & Dixit, V. K. (2011). Lantana camara: Phytochemistry and pharmacological activities. International Journal of Pharmaceutical Sciences and Research, 2(9), 2123–2130.
- 12. Ranjan, A., Mishra, A. K., Jha, S., & Shanker, K. (2012). Wound healing activity of the leaf extracts of Lantana camara Linn. International Journal of Green Pharmacy, 6(1), 67–70.
- 13. Ravi, L., Krishnan, M., & Narayanan, R. B. (2010). Antibacterial properties of *Lantana camara* L. against some human pathogens. Asian Pacific Journal of Tropical Medicine, 3(8), 675–678.
- 14. Ross, I. A. (2003). Medicinal Plants of the World: Chemical Constituents, Traditional and Modern Medicinal Uses (Vol. 1). Totowa, NJ: Humana Press.
- 15. Sathish, R., Ramesh, A., & Rajan, M. S. D. (2011). Phytochemical and antimicrobial activity of Lantana camara Linn. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2(3), 945–950.
- 16. Saxena, M., & Sharma, H. K. (1999). Antifungal activity of leaf extract of Lantana camara Linn. *Indian Journal of Pharmaceutical Sciences*, 61(1), 49–51.
- 17. Shah, N. C., Sharma, G., & Sharma, M. (2010). Evaluation of antimutagenic potential of Lantana camara leaf extract using Ames Salmonella assay. Toxicology International, 17(2), 80–84.
- 18. Sharma, O. P., Makkar, H. P. S., & Dawra, R. K. (2007). A review of the toxic effects of Lantana camara on animals. Clinical Toxicology, 45(4), 391–400.
- 19. Sharma, V., Kansal, L., Sharma, A., & Lalla, R. S. (2014). An overview of Lantana camara: A significant medicinal plant. *Journal of Phytology*, 6(4), 32–39.
- 20. Singh, R. K., Tiwari, S. N., & Singh, D. K. (2008). Antifilarial activity of Lantana camara against Setaria cervi in vitro. Journal of Parasitic Diseases, 32(2), 168–171.
- 21. Sukumar, K., Perich, M. J., & Boobar, L. R. (1991). Botanical derivatives in mosquito control: A review. Journal of the American Mosquito Control Association, 7(2), 210–237.