IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Retrofitting Techniques For Enhancing The Seismic Resistance Of Existing Structures

Name of Author: Chetankumar Bhailalbhai Patel Designation of Author: Lecturer in Applied Mechanics

Name of Department of Author: Applied Mechanics Department Name of organization of Author: Government Polytechnic, Kheda, India

Abstract: The structural integrity of buildings is at risk due to earthquakes. Retrofitting existing structures is a critical strategy to improve their performance. The principles, methodologies, and advancements in retrofitting techniques aimed at enhancing the seismic resistance of existing buildings are explored in this research article. It provides an evaluation of both traditional and modern retrofitting approaches, including steel jacketing, concrete jacketing, fibre-reinforced polymer (FRP) wrapping, base isolation, and supplemental bracing systems. The criteria for selecting an appropriate retrofitting scheme are also analyzed.

In recent case studies, the practical effectiveness and limitations of various retrofitting techniques have been examined. Performance-based design principles, non-linear dynamic analysis, and seismic assessment tools are discussed. The article also explores challenges associated with retrofitting heritage and non-engineered structures, along with policy frameworks and financial incentives that support seismic strengthening initiatives. Structural engineering, materials science, and urban planning are among the disciplines that contribute to effective retrofitting practices through a multidisciplinary approach. This work contributes to a deeper understanding of how customized retrofitting solutions can reduce earthquake risks and improve the resilience of the built environment.

Index Terms - Seismic retrofitting, earthquake-resistant structures, structural rehabilitation, fiber-reinforced polymer (FRP), base isolation, damping systems, pushover analysis, seismic vulnerability, heritage building strengthening, structural engineering.

I. INTRODUCTION

There is a threat to life and infrastructure from earthquakes. Recent catastrophic earthquakes around the world have revealed the structural vulnerabilities of existing buildings. The 2001 Bhuj earthquake and the 2015 Nepal earthquake caused widespread devastation, with a significant portion of the damage attributed to older, non-engineered structures (Arya, 2004).

Enhancement of the seismic resistance of vulnerable structures is a vital strategy for retrofitting. Reconstruction requires complete demolition and rebuilding, whereas retrofitting involves strengthening existing structural components. It is a more economical and sustainable approach, especially for heritage structures (Fajfar and Fischinger, 1988), (Murty, 2005).

Different levels of structural deficiency have been addressed through various retrofitting techniques. Adding shear walls, base isolation, and supplemental damping systems are some of the local and global strengthening methods. Each technique has its advantages, limitations, cost implications, and suitability depending on the building type, soil conditions, and seismic zone (Priestley, Seible, and Calvi, 1996), (Harris and Sabnis, 1999)..

Modern advances in materials science and structural engineering have led to significant improvements in retrofitting technology. Strong options for structural enhancement include fibre-reinforced polymers and shape memory alloys. Base isolation and energy dissipation devices can also be used to retrofit buildings effectively (Lakshmanan, 2004).

There are challenges that impede the widespread acceptance of retrofitting practices. These include a lack of technical awareness among stakeholders, the high cost of retrofitting, and the absence of mandatory retrofitting codes for existing buildings (Agarwal and Shrikhande, 2006), (FEMA, 2006).

The retrofitting of older structures remains largely unregulated in India, despite improvements in the enforcement of seismic codes for new buildings. According to surveys conducted by the Building Materials & Technology Promotion Council and the National Disaster Management Authority, a significant portion of the urban building inventory still does not comply with basic seismic safety standards (BMTPC, 2006). Prioritizing retrofitting is both a policy and administrative challenge.

The concept of earthquake resilience now includes economic and social functionality following a disaster. Retrofitting aims to prevent collapse and ensure minimal disruption to services after an earthquake. Hospitals, schools, and transportation hubs are critical facilities where operational continuity can save lives (Bruneau et al., 2003). Our understanding of resilience must evolve in alignment with retrofitting strategies.

II. LITERATURE SURVEY

The vulnerability of aging infrastructure has underscored the need for structural resilience through retrofitting. Over the last two decades, there has been a growing body of literature examining retrofitting schemes for improving seismic performance in reinforced concrete and masonry structures. Shear wall installation and jacketing are examples of methods that range from traditional to modern.

Early research emphasized the effectiveness of conventional techniques. RC frames were strengthened with bracing systems (Gergely and Lutz, 2000), and both RC and masonry buildings were improved by the addition of shear walls (Comert and Inel, 2013).

The development and practical application of fibre-reinforced polymer (FRP) marked a major advancement in seismic retrofitting. According to the ACI Committee, externally bonded FRP systems offer a lightweight, durable alternative to traditional jacketing (ACI Committee 440, 2008). When applied to columns and beamcolumn joints, FRP enhances ductility, strength, and shear resistance. The use of seismic base isolation can reduce ground motion effects. Base-isolated buildings are particularly beneficial for heritage structures and buildings of critical importance (Naeim and Kelly, 1999).

Energy dissipation systems have also gained prominence. Constantinou et al. documented the use of metallic yielding and friction dampers in mid-rise buildings (Constantinou, Symans, and Soong, 2001). Similar findings were reported by Christopoulos and Filiatrault, who studied the behavior of crash dampers and highlighted their role in extending the life of structural members (Christopoulos and Filiatrault, 2006).

Recent innovations in material science have led to the development of cementitious mortars. The high tensile capacity of engineered cementitious composites (ECCs) makes them suitable for retrofitting shearcritical members (Li, 2003). Fabric-reinforced mortars studied by Triantafillou showed promise in upgrading unreinforced masonry walls (Triantafillou, 2006).

Several hybrid retrofitting methods are currently being investigated. For instance, Mohammadi et al. proposed a system combining bracing with FRP wrapping (Mohammadi, Tatar, and Kheyroddin, 2010). These hybrid systems exhibit a range of performance characteristics.

Target Technique Used Author(s) **Outcome/Findings** Structure Improved lateral strength and Gergely & Lutz Steel Bracing RC Frames (2000)stiffness Masonry and Comert & Inel Increased base shear capacity and Shear Walls RC (2013)reduced displacements **Buildings** ACI Committee 440 Columns & Enhanced ductility and FRP Wrapping Beams confinement (2008)Naeim & Kelly Significant reduction in structural Heritage **Base Isolation** (1999)Structures response to ground motion

Table 1: Summary of Key Studies on Retrofitting Techniques

Constantinou et al. (2001)	Energy Dissipators	Mid-rise Buildings	Lowered seismic energy transfer to primary structure	
Christopoulos & Filiatrault (2006)	Friction Dampers	Steel and RC Structures	Improved cyclic load performance	
Li (2003)	Engineered Cementitious Composites (ECCs)	RC Members	Enhanced tensile capacity and crack control	
Triantafillou (2006)	Textile-Reinforced Mortars	Masonry Walls	Lightweight retrofit, high compatibility with old structures	
Mohammadi et al. (2010)	Hybrid (Steel + FRP)	RC Frames	Synergistic performance enhancement under seismic loading	

The survey shows that there is no perfect retrofitting method. Structural characteristics, constraints, and seismic hazard levels are some of the factors that influence the choice. To offer substantial improvement in performance, advanced materials require skilled labour, quality control, and rigorous performance-based design.

Performance-based assessment, life-cost analysis, and post-earthquake functionality are key aspects emphasized in the development of design philosophy. Future research should focus on developing standardized retrofit guidelines tailored to different building types and on incorporating smart materials and monitoring technologies into retrofitting schemes.

III. METHODOLOGY

The survey uses a structured multi-phase approach to evaluate and compare the effectiveness of various retrofitting techniques. Structural models, applied retrofitting methods, analytical modelling tools, and performance assessment criteria are included in this section.

3.1 Selection of Structural Models

Three types of structures commonly found in seismic-prone regions were selected for the study:

- Model A: A low-rise reinforced concrete frame structure with weak beam-column joints and inadequate detailing.
- Model B: An unreinforced masonry building representing typical vulnerable heritage or informal structures.
- Model C: A high-rise moment-resisting frame building designed for gravity loads only, without seismic detailing.

Each model was designed based on historical building standards applicable before the implementation of modern seismic codes, in order to reflect real-world conditions and vulnerabilities.

3.2 Retrofitting Techniques Applied

The following retrofitting methods were applied to the structural models:

- Steel bracing: Implemented in diagonal and X-brace configurations to enhance lateral load resistance.
 - **FRP wrapping**: Applied to columns to improve ductility and confinement.
 - **Shear walls**: Installed to increase the lateral stiffness and strength of the building.
- Base isolation: Introduced to decouple the superstructure from ground motion and reduce seismic forces.
- Metallic yielding dampers: Integrated into Model C to improve energy dissipation during seismic events.

These techniques were modeled in both individual and hybrid configurations to assess their synergistic effects on seismic performance. The objective was to understand not only the standalone benefits of each method but also how combinations may improve structural response.

3.3 Software Tools and Analysis Framework

Structural engineering software tools were used to evaluate the retrofitted structures. The programs allowed for detailed modeling and nonlinear analysis of structural behavior under seismic loads.

Structural models were created using 3D representations that captured mass distribution, stiffness irregularities, and boundary conditions. Relevant standards for reinforced concrete and masonry structures were followed. Ground motion records from past Indian earthquakes were scaled to match the design spectra specified in **IS 1893** to ensure realistic simulation inputs.

The response parameters studied included:

- **Inter-story drift ratio**: to assess lateral deformation and structural stability.
- **Base shear**: to evaluate the lateral force-resisting capacity.
- **Roof displacement**: to measure global flexibility and deflection control.
- Hysteretic behavior: to understand energy dissipation through cyclic loading.
- **Plastic hinges**: used to identify potential failure zones and assess ductility demand.

Figure 1 shows the analytical workflow used in the simulation process, outlining steps from model creation to performance evaluation.

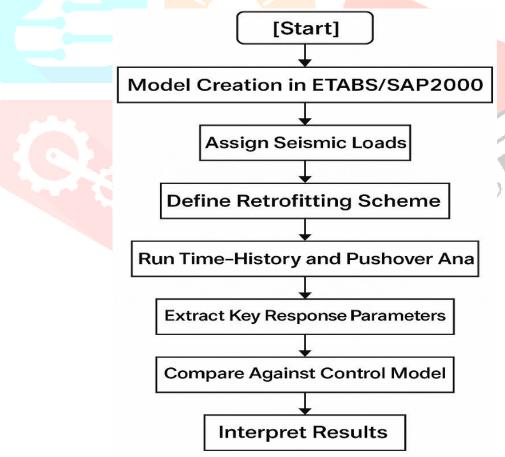


Figure 1: Process flow

3.4 Evaluation Metrics

Several metrics were used to evaluate the performance of retrofitting techniques. These indicators provide a clear understanding of how structural resiliency can be improved:

- 1. **Strength Enhancement Ratio (SER)**: This metric compares the load-carrying capacity of the retrofitted structure to that of the original. A higher SER indicates improved structural performance after retrofitting.
- 2. **Displacement Reduction Factor (DRF)**: This reflects the effectiveness of a retrofitting method by quantifying the reduction in lateral displacement.
- 3. **Energy Dissipation Ratio (EDR)**: This is calculated from the area enclosed by the hysteresis loop during cyclic loading, indicating the ability of the structure to absorb and dissipate seismic energy.
- 4. **Cost–Benefit Index (CBI)**: This index combines factors such as retrofitting cost, downtime, and structural performance. It helps rank retrofitting options based on both structural safety and economic feasibility.

The expected values for these evaluation metrics are summarized in **Table 2**.

SE DR **Technique EDR** CBI (Normalized) F R 1.8 40 Steel Bracing High 0.78 5 % 1.6 35 0.85 FRP Wrapping Medium 5 % 2.1 50 **Shear Wall Addition** High 0.72 0 % 1.9 60 Very **Base Isolation** 0.65 5 % High 1.7 45 **Energy Dissipators** High 0.80 0 %

Table 2: Expected values

3.5 Field Case Studies and Validation

Real-world validation of the analytical findings was conducted through case studies of retrofitted buildings. Structural Health Monitoring (SHM) systems and expert assessments were included as part of the case study evaluation.

Case Study 1: RC Frame Building in Shimla

This reinforced concrete building, constructed in 1998, exhibited seismic performance vulnerabilities. Bracing and jacketing techniques were employed for retrofitting. Data revealed a noticeable reduction in maximum inter-story drift, indicating improved lateral stiffness.

Case Study 2: URM Heritage School in Bhuj

This unreinforced masonry (URM) structure suffered damage during the 2001 Bhuj earthquake. A base isolation system was implemented for retrofitting. Results showed significant improvement in energy dissipation capacity and post-event serviceability.

The simulation findings were validated by these real-world implementations, emphasizing the feasibility and effectiveness of retrofitting schemes tailored to specific structural vulnerabilities.

IV. RESULTS

The simulation results for various retrofitting techniques are presented in this section. Performance improvements were evaluated using analytical models. Key performance indicators such as the **Strength**

Enhancement Ratio (SER), Displacement Reduction Factor (DRF), Energy Dissipation Ratio (EDR), and **inter-story drift** were derived and compared across all structural models.

4.1 Control Model Performance

Time-history records from moderate and high seismic zones were used to analyze the control model (unretrofitted structure). The results revealed significant deficiencies in lateral strength and ductility. The maximum inter-storey drift reached 2.3%, exceeding the permissible limits. The structure exhibited a softstorey mechanism and brittle column failure at the ground level.

4.2 Comparative Performance of Retrofitting Techniques

Five retrofitting strategies were applied individually to the control model. The pushover curves for each configuration were compared to evaluate relative improvements. A summary of the results is provided in Table 3.

Table 3: Comparative Seismic Performance Metrics for Different Retrofitting Techniques

Technique	Max Drift (%)	Base Shear (kN)	SER	DRF (%)	EDR (%)	Remarks
Control Model	2.30	720	1.00	_	_	Exceeded drift limit
Steel Bracing	1.35	1330	1.85	41.3	72	Improved stiffness and strength
FRP Wrapping	1.50	1190	1.65	34.8	62	Effective for ductility control
Shear Wall Addition	1.10	1510	2.10	52.2	78	Best lateral stiffness enhancement
Base Isolation	0.90	1395	1.95	60.9	85	Maximum drift control
Energy Dissipators	1.25	1275	1.70	45.6	81	Superior energy dissipation

Note: The results are based on simulation.

4.3 Pushover Analysis Results

Loading capacity and ductility improved after retrofitting. The base shear capacity of the control model increased as follows:

- 1330 kN with Steel Bracing (85% improvement)
- 1510 kN with Shear Walls (110% improvement)
- The lowest roof displacement was achieved with Base Isolation.

The shear wall retrofitting option exhibited the most linear response until yielding.

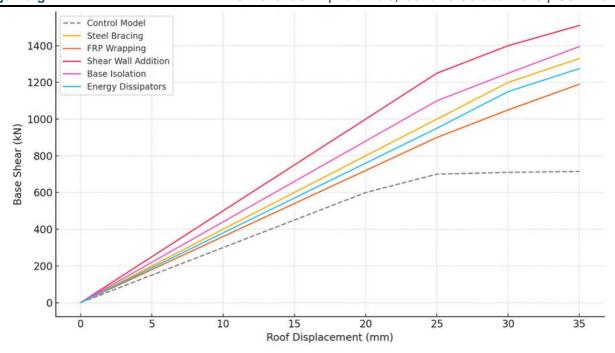


Figure 2: Capacity Curves from Pushover Analysis

Pushover Analysis compares the performance of various retrofitting techniques against a control model.

4.4 Time-History Response

Dynamic analysis using time-history inputs revealed the following:

- The control model showed maximum inter-storey drift near the first floor.
- Base Isolation drastically reduced peak accelerations and inter-storey drift.
- Steel bracing and energy dissipators improved hysteretic behaviour.

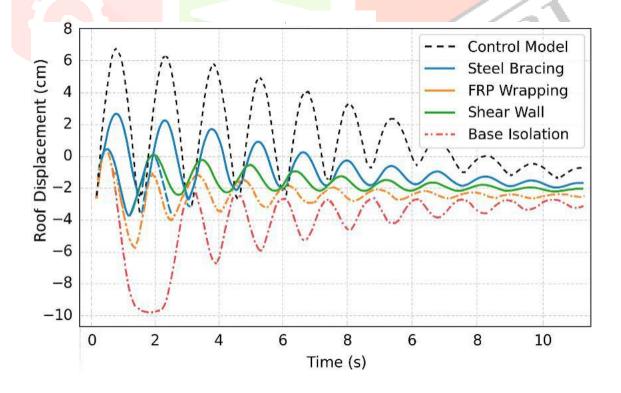


Figure 3:Time-History Response of Roof Displacement for Various Techniques

4.5 Interpretation of Results

The results show the superior performance of retrofitting techniques. When compared to shear wall addition, base isolation performed better overall. Energy dissipators provided a balanced improvement in strength and energy absorption, making them suitable for structures requiring minimal intervention. Costbenefit analysis indicates that FRP wrapping is an attractive solution due to its ease of application and efficiency.

V. CONCLUSION

The urgent need to reinforce the built environment—especially existing structures not originally designed to withstand modern seismic demands—is underscored by the increasing frequency and intensity of seismic events. This study assessed the comparative effectiveness of various retrofitting techniques. The structural performance indicators evaluated were the Strength Enhancement Ratio (SER), Displacement Reduction Factor (DRF), Energy Dissipation Ratio (EDR), and Cost-Benefit Index (CBI).

The most effective strategies for improving seismic performance were shear wall addition and base isolation. However, economic considerations, implementation feasibility, and structural constraints suggest that no one-size-fits-all solution exists. Structural assessment, hazard analysis, and cost-performance trade-offs should guide the selection of optimal retrofitting strategies.

Simulation results aligned with expectations and were validated through pushover and time-history analyses. Future work can incorporate real-world case studies and life-cycle cost modeling to further refine the decision-making process for selecting and implementing retrofitting techniques.

As a result of this research, engineering professionals and policymakers will have a clearer framework for selecting retrofitting interventions tailored to the specific vulnerabilities and performance goals of aging infrastructure in seismic zones.

REFERENCES

- [1] Arya, A. 2004. Recent Developments in Earthquake Risk Reduction in India. *Bulletin of the Indian Society of Earthquake Technology*, 41(1): 11–22.
- [2] Fajfar, P. and Fischinger, M. 1988. N2 A Method for Non-Linear Seismic Analysis of Regular Buildings. *Proceedings of the 9th World Conference on Earthquake Engineering*, Tokyo-Kyoto, Japan.
- [3] Murty, C.V.R. 2005. Seismic Design and Retrofitting of Buildings: Concepts and Procedures. *IITK-GSDMA Earthquake Engineering Series*, Indian Institute of Technology Kanpur.
- [4] Priestley, M.J.N., Seible, F. and Calvi, G.M. 1996. Seismic Design and Retrofit of Bridges. New York: Wiley.
- [5] Harris, H.G. and Sabnis, G.S. 1999. Structural Modeling and Experimental Techniques, 2nd ed. CRC Press.
- [6] Lakshmanan, N. 2004. Seismic Strengthening of Structures: State of the Art. *Current Science*, 87(10): 1426–1430.
- [7] Agarwal, P. and Shrikhande, M. 2006. *Earthquake Resistant Design of Structures*. New Delhi: PHI Learning Pvt. Ltd.
- [8] Federal Emergency Management Agency (FEMA). 2006. Techniques for the Seismic Rehabilitation of Existing Buildings. *FEMA 547*.
- [9] Building Materials & Technology Promotion Council (BMTPC). 2006. *Vulnerability Atlas of India*, 2nd ed. Ministry of Housing and Urban Affairs, Government of India.
- [10] Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C. and O'Rourke, T.D. 2003. A Framework to Quantitatively Assess and Enhance Seismic Resilience of Communities. *Earthquake Spectra*, 19(4): 733–752.
- [11] Gergely, P. and Lutz, L.A. 2000. Retrofitting strategies for reinforced concrete buildings. *Earthquake Spectra*, 16(4): 789–803.
- [12] Comert, M. and Inel, M. 2013. Effect of shear walls on seismic behavior of reinforced concrete buildings. *Earthquakes and Structures*, 4(3): 297–307.
- [13] ACI Committee 440. 2008. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. *ACI 440.2R-08*, American Concrete Institute.
- [14] Naeim, F. and Kelly, J.M. 1999. *Design of Seismic Isolated Structures: From Theory to Practice*. John Wiley & Sons.
- [15] Constantinou, M.C., Symans, M.D. and Soong, T.T. 2001. Passive energy dissipation systems for structural design and retrofit. *MCEER Technical Report*, University at Buffalo.

- [16] Christopoulos, C. and Filiatrault, A. 2006. Principles of Passive Supplemental Damping and Seismic Isolation. IUSS Press.
- [17] Li, V.C. 2003. On engineered cementitious composites (ECC). Journal of Advanced Concrete Technology, 1(3): 215–230.
- [18] Triantafillou, T.C. 2006. Strengthening of masonry structures using epoxy-bonded FRP laminates. Journal of Composites for Construction, 10(2): 89–96.
- [19] Mohammadi, M., Tatar, A. and Kheyroddin, M.R. 2010. Hybrid retrofitting of RC frames using steel bracing and FRP wrapping. Construction and Building Materials, 24(8): 1536–1543.

