IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

High-Quality Image Reconstruction Using Deep Learning Techniques

¹Ayti Shanmukha Sai Vamsi, Student in Dept. Of Master of Computer Applications, at Miracle Educational Society Group of Institutions

²Dr. T. Ravi Babu, Associate Professor at Miracle Educational Society Group of Institutions

³Dr. Chukkala Visweswara Rao, Associate Professor at Miracle Educational Society Group of Institutions

ABSTRACT

The goal of this paper is to boost the resolution of images using Convolutional Neural Networks (CNN) along with the auto-encoder layers. This method trains the CNN model with pairs of low-resolution and high-resolution images so that it can learn to improve the pixel values of low-quality images. The pixel values of low-intensity pixels are replaced with high-intensity pixels and a high-resolution image is generated. The intention of the system is to provide effective enhanced images that can be used in a variety of fields including medicine, satellite, and surveillance images. We propose our own dataset and code to emphasize the focus on the novelty while ensuring the efficacy. Having conducted a number of tests, the project brings forth enhancement in the quality of the reconstructed image which depicts the superiority of auto-encoders and CNNs as promising tools for further developments in super-resolution imaging technology.

Keywords: CNN, Auto-encoder

INTRODUCTION:

Single image super-resolution (SR) aims to solve the problem of reconstructing a high- resolution image from a low-resolution image, which inherently is a challenging task in the domain of computer vision. This problem can be classified correctly how it has to be tackled, as it does not have a precise solution. The reason why the problem is ill-posed is that low information is requested and a high amount of information is needed. To cope with this situation this issue has to be tackled by constraining the problem area using a lot of information. All image-based modern approaches use examples of compression as internal images patterns or pairs of low- and high-resolution images.

External example-based methods have been shown to be quite robust, as they can be applied to any overarching problem as well as for specific needs such as enhancement of a facial image. An instance of this is sparse-coding-based approaches that follow a pre-defined sequence of operations: taking overlapping patches, encoding using the low-resolution dictionary, and then reconstructing the image with the high-resolution dictionary. While these methods tend to provide emphasis on improving the dictionaries and mapping functions to optimize performance of super resolution, other important parts of the pipeline are seldom brought together or optimized in conjunction, which would be an avenue for exploration.

GAP IDENTIFIED BASED ON LITERATURE SURVEY:

Most of the current work in the field of image super resolution appears to utilize conventional methods of upscaling pictures or shallow machines learning models, all of which tend to be underwhelming in terms of their intricacies and the textures they provide. A majority of standard techniques heavily depend on a form of bicubic interpolation, and this is in its self a poor way for filling up high frequency clues. Similarly, even though there have been some improvements in neural network structure such as the CNNs that can result in better quality images, most of the models are still not fulfilling due to overfitting or requiring labeled data sets with a lot of images, which wouldn't always be avails.

Also, another gap exists in the practical difficulty and operational deep learning models, which take a lot of time and energy due to their complex integration. Auto-encoders have been proved to be useful but seldom used with CNNs for super-resolution methods. A lot of works do not specify how to make such models work with different picture databases which reduces their effectiveness.

Key gaps identified are:

- 1. Insufficient emphasis on basic and extensive datasets for different use cases.
- 2. The limited use of layers containing CNN and auto-encoder for their joint advantages.
- 3. Insufficient attention to practicality and efficiency in today's world.

PROBLEM STATEMENT:

A high quality input image is required in applications where low precision is not allowed such as medicine and satellites. The current solutions do not work well as most of the details are poorly reconstructed or preserved, leading to poor quality images.

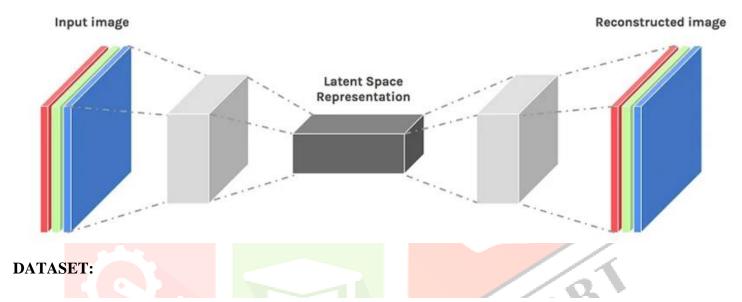
Key Challenges:

- 1. The Quality and Diversity of Datasets: Having strong training with multiple low and high images for all resolutions.
- 2. The ability of the model to generalize: The ability to build a model that will work across many other datasets not used during train.
- 3. The cost of computational processing: The possibility of working high quality images at a reduced time.
- 4. Intensity of pixel mapping: Functionalities to replace a pixel for a number of situations have not been finalized.

PROPOSED METHOD:

This project proposes the development of super resolution image generations model via the use of auto encoder architecture combined with convolutional neural networks. The CNN layers will be used to pull features out from low resolution images while the auto-encoder layers will further enhance the features to yield high resolution images. The model will be fed with pairs of normal and super-resolution images that would help it to adopt pixel intensity increasing techniques. Through this hybrid architecture, the proposed solution attempts to optimize the performance and the quality of the output at the same time. Once the model is fully developed, it will take in low-quality images and photorealistically renders it into a high-definition image which can be used in different applications.

ARCHITECTURE:



Paired low resolution and high resolution images are found in two opposite folders. Super resolution images are found in the high-resolution folder while ordinary images are found in the ordinary resolution folder. These images form varied content types enabling the model to be able to cover wide range of pixel intensity variations. The dataset for this project has been developed from scratch in order to maintain uniqueness and not utilize any datasets that already exist. The image pairs enable the model to make sense of the task at hand with CNN enabling the lower quality copy to be rotated into a suitable high quality picture. The structure of the dataset allows easy incorporation within the training workflow thus easing the model building process.

METHODOLOGY:

Data Collection and Preparation

Commence with image pair Collections with both high-quality and low-quality pictures.

Ensure all images are properly resized to fit the standards of the model and further format them.

Create the partitions with respect to the training, testing and validation of the set parameters.

Model Design and Architecture

Introduce an architecture model that is auto encoders and CNN's integrated hybrid neural network.

Extraction of the features shall be implemented employing the convolutional layers while the image data will be reconstructed by the auto-encoder layers of the neural network.

Activation functions such as ReLU will be used to the second layer to add a non-linear aspect and improve the new model's learning ability.

Model Training

The model should be trained utilizing the final dataset whereby the model will generate high resolution from low images.

Include loss functions such as mean squared error (MSE) with the aim of reducing the difference between the anticipated and actual images.

Seek to apply the strategies with the goal of improving the robustness of the model and trying to reduce overfitting.

Model Optimization

Improve the rate of convergence by using optimizers with a good rate such as Adam.

Dropout is among the techniques used to regularize the model in order to combat overfitting.

Hyperparameters were optimized to the best achievable limits for the experiment results.

Testing and Validation

Evaluation of the models will take place using images characterized by low resolution of which the model has not seen in the past.

Generation and other actions will be verified and validated through other means for instance images generated will be compared with the images considered as the actual position.

Deployment

Provide graphics interface to users in other to allow models to run after images have been uploaded.

Incorporate the trained model within the interface, allowing the users to create super-resolution images without difficulties.

Performance Evaluation

Some possible metrics for describing model performance are Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).

To showcase betterment, compare the results with baseline techniques.

EVALUATION:

Mean Squared Error (MSE)

The Mean Squared Error assesses the average of the squared differences of the original (or reference) image with the corresponding pixels of the reconstructed (or degraded) image.

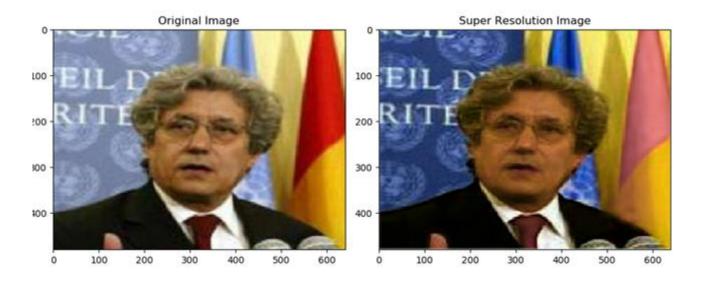
Peak Signal-to-Noise Ratio (PSNR)

PSNR evaluates the degree of distortion of the reconstructed images by measuring the ratio of the maximum power of a transmission signal to the noise which affects the signal (the difference between the original image and the reconstructed image). It is measured in dB.

Signal-to-Noise Ratio (SNR)

SNR characterizes the relationship between signal radiation power and the noise power, reflecting the image obtained after reconstruction in comparison with the primary image.

RESULTS:



In above screen first is the original image and second is the CNN generated super resolution image and you can see quality of CNN generated image is high compare to normal image and now test with other image

In above screen you can see difference between original and super resolution image

CONCLUSION

Concerns about the effectiveness of auto-encoders and Convolutional Neural Networks in increasing image resolution have been addressed in this project. The model after extensive training and optimization on a custom dataset shows great prospects in converting low quality images into higher resolution. The combination of CNNs and auto-encoders solves basic problems of image enlargements that exist in contemporary approaches. The system is easy to use and works fast which allows for its application in diverse areas, including, but not limited to, reducing noise in medical images and in surveillance. Filling the identified gaps, this project illustrates the place of deep learning in developing future technologies of super-resolution imaging.

REFERENCES:

- [1] X. Li, L. Jin, and H. Kan, "Air pollution: A global problem needs local fixes," Nature, vol. 570, no. 7762, pp. 437–439, Jun. 2019.
- [2] Y. Han, J. C. K. Lam, and V. O. K. Li, "A Bayesian LSTM model to evaluate the effects of air pollution control regulations in China," in Proc. IEEE Big Data Workshop (Big Data), Dec. 2018, pp. 4465–4468.
- [3] L. Bai, J. Wang, X. Ma, and H. Lu, "Air pollution forecasts: An overview," Int. J. Environ. Res. Public Health, vol. 15, no. 4, p. 780, 2018.
- [4] Y. Ding and Y. Xue, "A deep learning approach to writer identification using inertial sensor data of air-handwriting," IEICE Trans. Inf. Syst., vol. E102-D, no. 10, pp. 2059–2063, 2019.
- [5] S.-Q. Dotse, M. I. Petra, L. Dagar, and L. C. De Silva, "Application of computational intelligence techniques to forecast daily PM10 exceedances in Brunei Darussalam," Atmos. Pollut. Res., vol. 9, no. 2, pp. 358–368, Mar. 2018.
- [6] M. Jia, A. Komeily, Y. Wang, and R. S. Srinivasan, "Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications," Automat. Construct., vol. 101, pp. 111–126, May 2019.

- [7] S. Abirami, P. Chitra, R. Madhumitha, and S. R. Kesavan, "Hybrid spatio-temporal deep learning framework for particulate matter (PM2.5) concentration forecasting," in Proc. Int. Conf. Innov. Trends Inf. Technol. (ICITIIT), Feb. 2020, pp. 1–6.
- [8] Y. Cheng, S. Zhang, C. Huan, M. O. Oladokun, and Z. Lin, "Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving," Building Environ., vol. 147, pp. 11–22, Jan. 2019.
- [9] A. C. Cosma and R. Simha, "Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions," Building Environ., vol. 148, pp. 372–383, Jan. 2019.
- [10] M. Bhowmik, K. Deb, A. Debnath, and B. Saha, "Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: Neural network modeling and response surface methodology optimization," Appl. Organometallic Chem., vol. 32, no. 3, p. e4186, Mar. 2018.
- [11] V. Chaudhary, A. Deshbhratar, V. Kumar, and D. Paul, "Time series based LSTM model to predict air pollutant's concentration for prominent cities in India," in Proc. Int. Workshop Utility-Driven Mining (UDM), Aug. 2018, pp. 1–9.
- [12] M. Chen, J. Yang, L. Hu, M. S. Hossain, and G. Muhammad, "Urban healthcare big data system based on crowdsourced and cloud-based air quality indicators," IEEE Commun. Mag., vol. 56, no. 11, pp. 14–20, Nov. 2018.
- [13] R. Chen, X. Wang, W. Zhang, X. Zhu, A. Li, and C. Yang, "A hybrid CNN-LSTM model for typhoon formation forecasting," GeoInformatica, vol. 23, no. 3, pp. 375–396, Jul. 2019.
- [14] S. Du, T. Li, Y. Yang, and S. Horng, "Deep air quality forecasting using hybrid deep learning framework," IEEE Trans. Knowl. Data Eng., vol. 33, no. 6, pp. 2412–2424, Jun. 2021.
- [15] R. Feng, H.-J. Zheng, H. Gao, A.-R. Zhang, C. Huang, J.-X. Zhang, K. Luo, and J.-R. Fan, "Recurrent neural network and random forest for analysis and accurate forecast of atmospheric pollutants: A case study in Hangzhou, China," J. Cleaner Prod., vol. 231, pp. 1005–1015, Sep. 2019.
- [16] B. S. Freeman, G. Taylor, B. Gharabaghi, and J. Thé, "Forecasting air quality time series using deep learning," J. Air Waste Manage. Assoc., vol. 68, no. 8, pp. 866–886, Aug. 2018.
- [17] S. Mahajan, H.-M. Liu, T.-C. Tsai, and L.-J. Chen, "Improving the accuracy and efficiency of PM2.5 forecast service using cluster-based hybrid neural network model," IEEE Access, vol. 6, pp. 19193–19204, 2018.
- [18] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, "An information framework for creating a smart city through Internet of Things," IEEE Internet Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.
- [19] A. Grover, A. Kapoor, and E. Horvitz, "A deep hybrid model for weather forecasting," in Proc. 21st ACM SIGKDD Int. Conf. Knowl. DiscoveryData Mining, Aug. 2015, p. 379–386.
- [20] A. Agarwal and M. Sahu, "Forecasting PM2.5 concentrations using statistical modeling for Bengaluru and Delhi regions," Environ. Monit. Assessment, vol. 195, p. 502, Mar. 2023.