

Smart Railway Crossing System With Automated Gate Control And Object Monitoring

**Mr. P. RAGHUVeer 1, KODALI MUNNI 2, MEDA MOHAN KRISHNA 3, BODAPATI
JAYANTHI 4, CHUNDURU PRANEETH**

#1 Assistant Professor in Department of Information Technology, Dhanekula Institute of Engineering and Technology, Vijayawada.

#2#3#4#5 B. Tech with Information Technology in Dhanekula Institute of Engineering and Technology, Vijayawada.

ABSTRACT By monitoring trains and spotting track items, this project seeks to create an automated railway gate control system improving safety. The system uses an Arduino Uno as the core controller interfaced with a set of IR sensors to detect an oncoming train. The technology turns on servo motors to automatically close the railway gate when a train is spotted; a red signal light is lit to stop the train. Placed next to the tracks, extra sets of IR sensors identify any objects or barriers that put out a buzzer to notify the nearby personally for prompt intervention and automatically change the signal to red to avoid risk. By use of efficient automation, this technology lowers human error, guarantees safe passage, and prevents accidents, hence enhancing railway safety.

1. INTRODUCTION

1.1. Overview

A key backbone of contemporary infrastructure, railway transit guarantees the quick movement of people and products across great distances. Still, one of the most dangerous places in transit systems is railway crossings. Human irresponsibility, lack of appropriate monitoring, and inadequate warning systems mostly cause accidents at level crossings. Traditional railway gate control systems depend on manual operation or semi-automated systems without real-time intelligence.

The Internet of Things (IoT) has become a game-changer in railway safety as technology progresses. By including smart sensors, communication networks, and automated control systems, IoT-based automation can improve security, efficiency, and dependability at railway crossings. By means of IoT technology to identify impediments, automate gate operations, and deliver real-time notifications to pedestrians, cars, and railway authorities, the Automated Railway Gate with Object Monitoring and Signal Alerting System

seeks to enhance safety at railway crossings.

1.2. Importance of Railway Safety and Automation

One of the most accident-prone places in railway networks are railway crossings. Traditional systems are vulnerable to mistakes like delays in closing gates or failure to identify track items since they depend much on human operators. Manual operation causes traffic congestion, which raises the possibility of accidents.

Railway crossing automation can:

- Reduce human intervention and the chances of human error.
- Ensure faster and more efficient gate operations.
- Detect obstacles in real-time, preventing potential accidents.
- Provide early alerts to both train operators and road users.
- Improve traffic flow by synchronizing railway gate operations with road signals.

IoT-based automation can revolutionize railway safety by enabling real-time communication between railway gates, trains, and monitoring stations. By incorporating object detection, automated signal control, and smart alerting systems, IoT enhances safety and efficiency at railway crossings.

2. LITERATURE SURVEY

Dong, H., Ning, B., Cai, B., & Hou, Z.-S. (2010). Automatic Train Control System Development and Simulation for High-Speed Railways. *IEEE Circuits and Systems Magazine*, February 2010.

Abstract:

This paper introduces the research and development of high-speed railway systems, focusing particularly on automatic control systems. It presents numerical modeling of high-speed train control systems and discusses simulation results that validate the proposed models. The study aims to enhance the efficiency and safety of high-speed railway operations through advanced control methodologies.

Poroshin, A., Nikitin, A., Shatokhin, V., & Kotenko, A. (2017). Diagnostics and Monitoring of Railway Automation and Remote-Control Power Supply Devices. *2017 IEEE East-West Design & Test Symposium (EWDTs)*, September 2017. Novi Sad, Serbia.

Abstract:

This paper discusses the diagnostics and monitoring of power supply devices used in railway automation and remote-control systems. It analyzes failure statistics and proposes methods to enhance the reliability and efficiency of these devices. The study emphasizes the importance of continuous monitoring and timely diagnostics to prevent failures and ensure the smooth operation of railway automation systems.

Abstract:

This project addresses issues occurring at unmanned railway level crossings by utilizing ZigBee point-to-point communication. The proposed system aims to reduce accidents and gate closure time by employing sensors to detect approaching trains and alerting road users accordingly. The use of ZigBee technology facilitates wireless communication between the train detection system and the gate control mechanism, enhancing the safety and efficiency of railway level crossings.

Kumar, P.K., & ShivaShankara, B.S. (2015). PLC Based Automatic Fault Detection of Railway Track and Accidence Avoidance System. *International Journal of Engineering Research and General Science*, 3(2), March-April 2015.

Abstract:

This work attempts to develop an advanced automatic PLC-based fault detection technology in the railway network to overcome existing problems. The proposed automatic control system utilizes vibration monitoring sensors and ultrasonic sensors to detect faults occurring in the railway track. The hardware components are integrated with a Programmable Logic Controller (PLC) to automate the process of fault detection and alert generation, thereby enhancing the safety and reliability of railway operations.

Bhargav, N., Gupta, A., Khirwar, M., Yadav, S., & Sahu, V. (2016). Automatic Fault Detection of Railway Track System Based on PLC (ADOR TAST). *International Journal of Recent Research Aspects*, 3(1), March 2016.

Abstract:

This paper presents an efficient method to avoid train collisions by using a PLC for automatic control of vibration and ultraviolet sensors. The vibration sensor detects faults on the railway track, while the ultraviolet sensor detects obstacles in front of the train. Upon detecting a fault or obstacle, the PLC processes the information and initiates appropriate actions to prevent accidents, thereby improving the safety and efficiency of railway operations.

3.PROPOSED SYSTEM

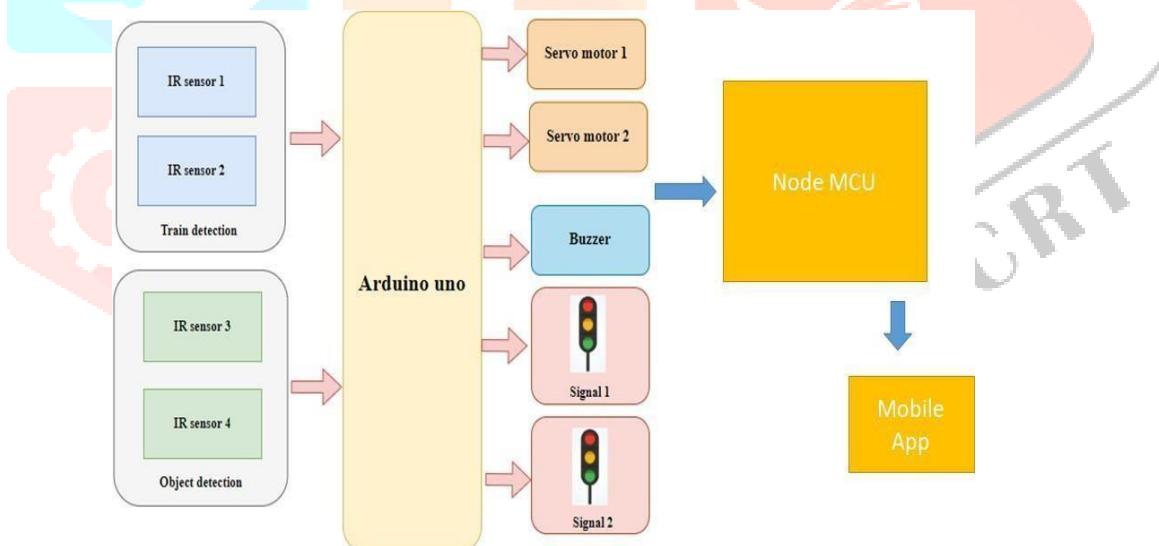
The suggested system is an automated railway gate control system using IR sensors to identify on-track objects and oncoming trains. The technology automatically closes the gates using servo motors and regulates signal lights to guarantee safe passage when it detects a train. Should a blockage be found, the system activates an alarm and turns the signal to red to notify staff members and stop mishaps. The

system guarantees effective railway crossing control, enhances safety, and lowers human error by means of automated gate operation and monitoring.

How do sensors function?

IR sensors detect reflected infrared light by emitting it. The sensor picks up the beam's disruption when a train or something blocks it and notifies the Arduino.

What scientific principles underlie sensors?


IR sensors operate on the idea of reflection or interruption using infrared radiation. An object present changes the infrared signal, hence enabling detection depending on light absorption or reflection.

Should they fail, what should one do?

In emergencies, manually override the system; employ alternate detection techniques (like ultrasonic or camera-based systems), undertake regular maintenance, and implement redundancy with several sensors.

Using IR sensors, an Arduino microcontroller, and a servo motor for effective gate automation, the Automated Railway Gate with Object Monitoring and Signal Alerting System aims to improve railway crossing safety. The system automatically controls the gate and provides required alerts by recognising an oncoming train, monitoring objects on the railway track, and so doing.

Fig 1. Proposed Block Diagram

Detecting both the train and any track obstructions is mostly done by the IR sensors. Strategically situated on either side of the railway gate are two sets of IR sensors. Triggering the automated process, the first set identifies the incoming train at a specified distance. Located close to the railway track, the second set of IR sensors detects any obstacles—vehicles or people, for example—that might be in the danger zone when the gate closes.

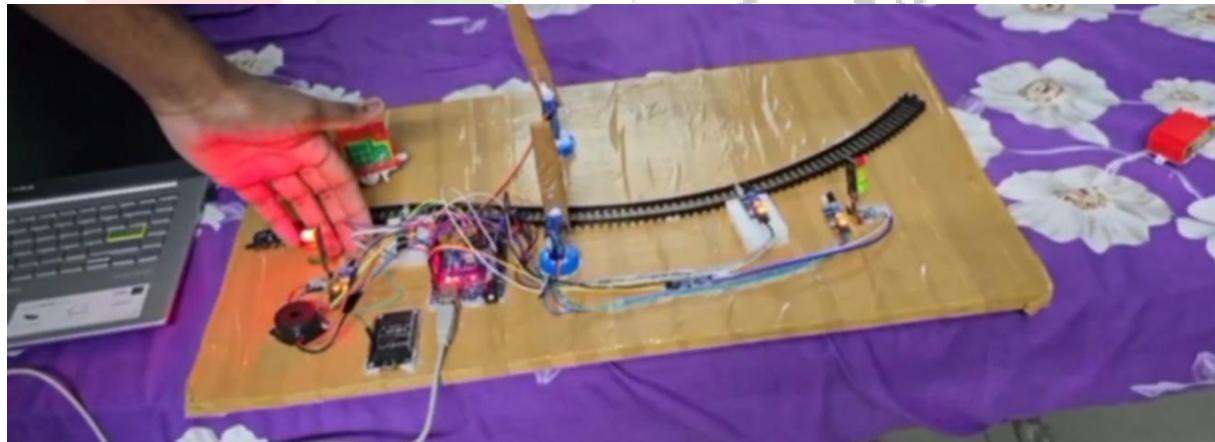
The Arduino microcontroller, which serves as the system's central processing unit, gets a signal from the IR sensor when it senses an incoming train. The Arduino delivers a control signal to the servo motor to run the railway gate by processing the information from the sensors. The servo motor guarantees smooth

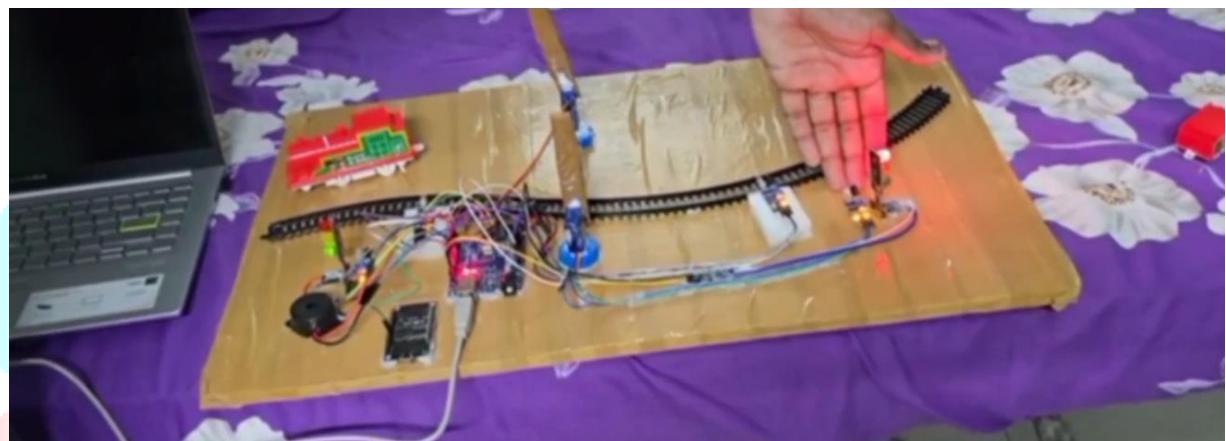
closing of the gate when a train is detected and reopening once the train has safely passed, hence accurately controlling the movement of the gate.

1) Train Detection & Gate Automation

- IR sensors detect an approaching train.
- System automatically closes the gate using servo motors.
- Once the train has passed, the gate reopens automatically

2) Object Monitoring on Tracks

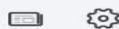

A second set of IR sensors detects objects (obstacles) on the railway track.


- If an object is detected:
 - Buzzer alarm is activated to alert personnel.
 - Signal remains red until the track is clear.

3) Emergency Alert System

- If the object remains on the track for too long, the system automatically Sends an alert to the railway authority.

4.RESULTS AND DISCUSSION



10:03

VoG LTE2 91%

Notifications

Feb 25, 2025

9:38 AM Feb 25, 2025

alertAlert! Object or person near track
please clear

Train proj

9:37 AM Feb 25, 2025

alertAlert! Object or person near track
please clear

Train proj

9:36 AM Feb 25, 2025

alertAlert! Object or person near track
please clear

Train proj

9:35 AM Feb 25, 2025

alertAlert! Object or person near track
please clear

Train proj

9:35 AM Feb 25, 2025

alertAlert! Object or person near track
please clear

5.CONCLUSION

By lowering human interaction and minimising accidents, the automated railway gate with object monitoring and signal alerting system using IoT improves safety and efficiency at railway crossings. The system guarantees automatic gate control depending on real-time train detection by including IR sensors, Arduino, servo motors, LEDs, and buzzers. IoT helps to enhance railway safety management by means of remote monitoring and real-time notifications. While the obstacle detection system stops accidents, the buzzer and LED signals efficiently alert cars and pedestrians. Reducing delays and enhancing traffic flow, this system provides a reasonably priced, energy-efficient, dependable solution for railway automation. Future improvements could be solar-powered operation, cloud integration, and AI-based predictive analysis to further maximise performance and sustainability.

REFERENCES

[1] Hairong Dong, Bin Ning, Baigen Cai, Zhong-Sheng Hou, "Automatic Train Control System Development and Simulation for High-Speed Railways", IEEE Circuits and Systems Magazine, February 2010.

[2] Alexey Poroshin, Alexander Nikitin, Vitaly Shatokhin, Alexey Kotenko, "Diagnostics and monitoring of railway automation and remote-control power supply devices", 2017 IEEE East-West Design & Test Symposium (EWDTs), September 2017. Novi Sad, Serbia.

[3] M.Siva Ramkumar, "Unmanned Automated Railway Level Crossing System Using Zigbee", Article, January 2017.

[4] P.K.Kumar and B.S.ShivaShankara, PLC Based Automatic Fault Detection of Railway Track and Accidence Avoidance System, *International Journal of Engineering Research and General Science*, ISSN 2091-2730, 3, Issue 2, March-April 2015.

[5] N. Bhargav, A. Gupta, M. Khirwar, S. Yadav and V. Sahu, Automatic Fault Detection of Railway Track System Based on PLC (ADOR TAST), *International Journal of Recent Research Aspects*, ISSN: 2349-7688, 3, Issue 1, March 2016.

[6] https://www.researchgate.net/publication/313787552_Automatic_Railway_System/download [7] Railways to eliminate over 6,000 unmanned level crossings, article in the Indian Express, 30th July 2016 by PTI. [3] Indian Railway develops warning system for unmanned level crossings, article in Times of India, 25th October 2015 by PTI.

[8] Swati Rane, Mayuri Pendhari, Pooja Patil, Prakash Sakari, Yashmith Shetty, Automatic Railway Gate Control and Track switching with automated train, *International Journal of Science, Engineering and Technology Research (IJSETR)*, Volume 4, Issue 4, April 2015 , pp 1062-1066.

[9] K. Vidyasagar, P. Sekhar Babu, R. Ram Prasad, Anti Collision and Secured Level Crossing System, *International Journal of Computer Applications* Volume 107 ,No 3, December 2014, pp.1-4.

[10] HninNgwe Yee Pwint, ZawMyoTun, HlaMyoTun, Automatic Railway Gate Control System Using Microcontroller, *International Journal of Science, Engineering and Technology Research (IJSETR)*, Volume 3, Issue 5, May 2014 ,pp 1547-1551

Author's Profiles

Mr. P. RAGHUVeer is presently working as an Assistant Professor in the Department of Information Technology at Dhanekula Institute of Engineering and Technology, specializing in Deep Learning and Machine Learning. With over 16 years of teaching experience, he has played a vital role in mentoring and guiding students in the field of IT. He holds a strong academic background and has contributed significantly through his expertise in artificial intelligence and data science. His dedication to research and teaching in machine learning continues to inspire students to excel in the rapidly evolving world of AI and technology.

KODALI MUNNI is a B. Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology, Vijayawada. She is proficient in Python, C, and C++ and has expertise in web development using Flask and frontend tools. Her skills extend to machine learning and AI, focusing on sentiment analysis, generative AI&ML, HTML, CSS. She is also skilled in SQL and has a strong foundation in data analysis, automation, and software development.

MEDA MOHAN KRISHNA is a B. Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology, Vijayawada. He completed internship in ChatGPT/Generative AI, addressing ethical concerns and working on image classification using advanced machine learning models like SVM, KNN, MLP, and CNN and other internships like AI&ML, He is skilled in java, python and SQL and leveraging in new technologies

BODAPATI JAYANTHI is a B. Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology. She completed internship in ChatGPT/Generative AI, addressing ethical concerns and working on image classification using advanced machine learning models like SVM, KNN, MLP, and CNN and other internships like AI&ML, Full Stack Development. She has a strong foundation in Python, JAVA, SQL and web development technologies like HTML, CSS, and JavaScript.

CHUNDURU PRANEETH is a B. Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology, Vijayawada. He has a strong foundation in programming and is proficient in Python, C, and C++. He is skilled in data analysis and automation, continuously exploring advanced AI techniques to develop innovative solutions. His passion for technology and problem-solving drives him to enhance his skills in the ever-evolving field of computer science.