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Abstract: Hybrid neural-fuzzy systems are used for gender estimation of dental panoramic radiography,
coupling methods such as convolution neural net- works (CNN s), fuzzy logic, and contrast-limited adaptive
histogram equalization. Stratified cross-validation is performed for analysis after pre-processing on a dateset
comprising 947 images. The most successful approach of SVM augmented using expanded fuzzy rules
comes with accuracy rating of 94.93% and finds a better success than traditional models. Results highlight
the merits of hybrid strategies in maintaining accuracy and interpretability in dental diagnostics and forensic
purposes.

Index Terms - Neural networks, fuzzy logic, dental radiography, gender detremination.

1. Introduction

Dental radiography is a central component of contemporary dentistry, used for diagnose , treatment planning,
and forensic identification. Panoramic radiography especially offer complete images of the oral and
maxillary areas and are therefore extremely useful in activities like gender assessment, age estimation, and
detection of pathology. Conventional diagnostic techniques are largely dependent on human interpretation
by dental specialists, which is both time-consuming, subjective, and susceptible to variability. Recent
developments in artificial intelligence (Al) have brought in semi-automated solutions, but there are still
challenges in reconciling precision, interpretability, and resilience—particularly with intricate anatomy
structures and variable image quality.

Dental radiography continues to be a staple of contemporary diagnostics, with panoramic imaging yielding
key information on oral health, gender determination, and age estimation [7]. Classical approaches are
dominated by manual evaluation by dental professionals, which is time-consuming, subjective, and
susceptible to inter- observer differences [6]. For example, gender identification based on dental morphology
typically entails morphological evaluations of the mandible or dental arch, which are not standardized or
scalable [5]. Although rule-based computational algorithms have been suggested to perform these tasks
automatically, they do not handle the inherent complexity and variability of dental structures in dental
images [9].
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Improved technologies based on DL have emerged, demonstrating potential in overcoming these challenges.

CNNs, including VGG16 and ResNet, perform well at extracting discriminative features from raw images,
with state-of-the-art performance in caries detection [12] and tooth segmentation [10]. Yet, data-driven DL
models have two significant shortcomings in medical applications: [7] their "black-box" nature restricts
interpretability, preventing practitioners from trusting them [3], and [6] they are poor under noisy or low-
contrast imaging, which is typical in dental radiography [13].

Correct gender identification from dental X-rays is important in forensic odontology and orthodontics to
facilitate personal identification and treatment planning. Conven- tional techniques tend to use manual
measurements of the skeletal structures, which are time-consuming and prone to human error. To address
these issues, deep learning models, especially convolutional neural networks (CNNs), have been
investigated for their capacity to automatically extract and learn intricate patterns from medical images. Deep
learning models have been shown in recent research to be effective in gender classification using dental
radiographs. For example, [2] used transfer learning with the DenseNet121 model on a sample of 24,000
panoramic dental images and attained a 97.25% success rate in gender classification. In the same vein, a
study that used a conventional CNN model on more than 200,000 panoramic radiographs attained an
accuracy of 95.02% in sex estimation. Besides that, [8] proposed a gender classification using dental X-ray
images with a deep convolutional neural network, reaching 95% accuracy.

Fuzzy logic systems, on the other hand, offer a platform for managing uncertainty and representing expert
knowledge in understandable rules [4]. Initial uses in dentistry, e.g., fuzzy rule-based periodontal disease
diagnosis [11], proved their ability to make transparent decisions. However, fuzzy systems alone do not
have the ability to learn hierarchical features from high-dimensional data such as radiographs independently
[1].

This Study proposes a new comparative paradigm that utilizes six hybrid neural- fuzzy approaches to dental
image classification, in this case, gender prediction from panoramic radiographs. By combining contrast
enhancement methods like CLAHE with deep feature extraction and proposing an end-to-end CNN-fuzzy
fusion model for explainable learning, our solution seeks to improve classification accuracy and resilience.
This research not only promotes the fusion of fuzzy logic and deep learning in dental imaging but also offers
useful insights into the prospects of hybrid intelligent systems for medical image processing.

2. Materials and Methods

2.1 Dataset

The data was gathered from three dental clinics in Gujarat, India, with the pertinent patient details, including
age and gender, noted for each X-ray image. To provide consistency and usability for future research, all
images were standardized to the same dimensions. The gathered X-rays were systematically categorized into
a structured Excel sheet for analysis. The final dataset comprises 947 images, consisting of 513 male and
434 female patient records, providing a well-organized foundation for further research and analysis,
particularly for future classification tasks.

IJCRT2504380 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d242


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

(a) Male X-ray (b) Femaler X-ray
Figure 1: Sample of Dental Xray Both the Genders

2.2 Methodology

Feature Extraction

Data Preprocessing

Y

Evaluation < Pezy Logi_c st < Base Model
Design
Figure 2: Methedology
22.1 Dataset Preparation and Preprocessing

Standardize input data and achieve strong model generalization.

Dataset Composition:

Source: 2D dental panoramic radiographs, binary gender labels (male/female).

Class Distribution: Stratified sampling maintains the male-to-female ratio during splits to reduce bias.

2211 Image Preprocessing

. Resizing: All images were resized to 224x224 pixels to match the input require- ments of
VGG16.

. Normalization: Pixel values were normalized to the range [0, 1] wusing either

preprocess_input (VGG16) or standard normalization. For pixel value scaling in VGG16-based methods:

_lraw-p
o

Inorm

where
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L = 0.485, 0.456, 0.406, o =0.229,0.224, 0.225

Contrast Enhancement:

- CLAHE: Applied in the LAB color space to enhance local contrast without amplifying
noise.

- Purpose: Improves the visibility of dental structures (e.g., jawlines, tooth roots) for better
feature extraction.

2212 Label Encoding

Label encoding was utilized in this research to convert categorical gender labels (male/female) into numeric
form that is acceptable by machine learning algorithms. The original text labels were converted into binary
forms (0 for male, 1 for female) using the LabelEncoder from scikit-learn. This preprocessing ensures

compatibility with classifiers like MLPs, SVMs, and CNNs, which need numeric inputs.
Rationale:

Binary Classification: Gender prediction is a binary classification problem, so label encoding
Is a natural and cost-effective option.

Algorithm Compatibility: Maps categorical data to integer format without
causing sparsity or redundancy (compared to one-hot encoding for binary problems).

Reproducibility: Encoded labels maintain class balance, consistent with the stratified cross-
validation approach to ensure dataset integrity.

2213 Cross-Validation

Stratified 5-Fold: Divides data into 5 subsets maintaining class balance. For K-fold splits (K = 5):
Ensure Nmaie and Nremate are preserved in each fold.

. Ensure the ratio Nfeﬂ!&ags maintained in each fold.

Benefit: Minimizes variance in performance measures and maintains representa- tiveness.

222 Feature Extraction

Extract discriminative features from raw images for classification.
2221 VGG16-Based Feature Extraction (Methods 1-4, 6)

Architecture: Trained beforehand on ImageNet with top layers modified:

Flatten Layer: Transform 3D convolutional outputs into 1D vectors.

Dense(256): Dimensionality reduced to 256 features with ReL.U activation.

Let X € R?24x2243 pe the input image. The pretrained VGG16 outputs a tensor
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Fconv € R7x7x512
After flattening and passing through a dense layer:

Ffina = ReLU W'
dense ' FlattenFconv bdense

where
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Wdense € R25088><256, bdense € R2%6,

Process:
Images went through VGG16, except the classification head.
Output features preserve hierarchical patterns (edges — textures — dental struc- tures).

2222 Custom CNN (Method 5)

Architecture:
Convolutional Layers: 32, 64, and 128 filters (3x3 kernels) for spatial feature extraction.

Global Average Pooling: Contracts spatial dimensions while keeping channel information.

Layer 1:
C!=ReLU Wi xX by

32 filters of size 3 x 3.
Layer 2:
C2=RelLU W5 «C! by

64 filters of size 3 x 3.
Layer 3:
C3=RelLLU W3 % C? bz

128 filters of size 3 x 3.
Max Pooling After each convolutional layer:

P'= MaxPoolx; C!

Global Average Pooling

Output
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genseG bdense

where o is the sigmoid function.

Architecture Flow
X = Conv2D + ReLU + MaxPool - 32 - 64 — 128 - G — Dense + Sigmoid — p

Training: End-to-end learning from raw pixels, learned to optimize dental-specific features.

2223 Contrast Enhancement (Method 2) Workflow:

RGB — LAB color space conversion.
CLAHE applied to the L (lightness) channel.

Channels merged and converted back to RGB. For a tile T in the LAB space’s L channel:

Tenhanced = CLAHE T clip_limit = 3.0, tile_grid_size=8, 8

Impact: Increases edges and textures relevant for gender identification (e.g., mandible shape).

223 Base models

2231 Multilayer Perceptron (MLP) (Methods 1-3)

Objective: Use non-linear mappings to convert the retrieved information into gender predictions.
Architectural Details Hidden Layers:

Layer 1:
h: = ReLU Wax by

where x € R%® (VGG16 features), Wy € R?%6x512,
Layer 2 (if used):
h2 = ReLU W:h; b2

where W, € R512x256

Output Layer
p =0 Wth bo
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where o is the sigmoid function, and L =1 or 2.
Optimization

Adam Solver: Adaptive learning rates with momentum terms:

_ Me
Ou=6-nV . =
where m (bias-corrected momentum) and v*t (bias-corrected velocity) are derived from gradients.

Early Stopping: To avoid overfitting, training stops after 10 epochs if validation loss does not
improve.

2.2.32 Hyperparameter Tuning (Method 2) RandomizedSearchCV: Explores:

Hidden Layer Sizes: {256, 512, 256, 256}.
Activation Functions: ReLU (sparsity-inducing) vs. Tanh (smooth gradients).
Learning Rate: {10-3, 10-4}.

Adaptive Learning: Adjusts rates dynamically during training.

2.2.33 Support Vector Machine (SVM) (Methods 4, 6)

Objective: Find the optimal hyperplane to separate male/female features.
Mathematical Formulation:

Linear Kernel:
Kxi, Xj = X' Xj i

Suitable for high-dimensional data (256 features) without explicit non-linear mapping.

. Decision Function:
Y_ T sign N aiyiKxi, x b

where a; are Lagrange multipliers from the optimization:
1 2 N
. = C !
mip p VGt

subject to:
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yw'xib=1-§&, & =0.

Probablllty Calibration (Platt Scaling):
Sigmoid Fitting: Post-hoc logistic regression on SVM scores:

P)/:1|X=1exp-fxB A
where: fx=w'x b and A, B are learned parameters.

2.2.3.4 Convolutional Neural Network (Method 5)

Objective: Direct learning of gender-discriminative features from raw pixels end- to-end.
Training Protocol:

Optimizer: Adam with learning rate n = 0.001, 81 = 0.9, 82 = 0.999.

Loss Function: Binary cross-entropy:

N ilog pi 1-vilogl - pi
N i=1 Yyi 109 Pi yilogl - pi

Architecture:

Conv2D Layers: Hierarchical feature extraction:
- Cl = ReLUW: X by, 32 filters.
- C2 = ReLUW, » P by, 64 filters.
- C3 = ReLUW; * P2 bg, 128 filters.

. Global Average Pooling:
G= L 7 7 C3 -~
7x7i=1j=1 s
Output Layer:
p= UWoG bo
Benefits
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Feature Learning: Avoids reliance on pretrained models (e.g., VGG16).

Spatial Invariance: Convolutions learn local patterns (e.g., tooth forms) irrespective of position.

22.4 Fuzzy Logic System Design

Objective: Adjust base model predictions using expert-defined rules to handle uncertainty.
22.4.1 Input Variables

Error (e):

€=VYtrue— P

Difference between true label (yiue) and predicted probability (p).
Delta (0):

0=y-p

Difference between predicted class (y*) and probability (p).

2.2.4.2 Membership Functions (MFs)

Fuzzify numerical inputs to linguistic terms (e.g., Negative, Zero).

Objective: Define linguistic terms (Negative, Zero, Positive) foreand o.

1. Gaussian Membership Functions (Methods 1, 5)

Smooth, bell-shaped curves with centers at 0.5, 0, or 0.5, with a standard deviation of o = 0.2. These
functions ensure smooth transitions between linguistic terms.

2

X C
X=exp 202
Hterm
Negative: c=-0.5,0=0.2
. Zero: ¢c=0,0=0.2
Positive: c=0.5,0=0.2
2. Triangular Membership Functions (Methods 24, 6)

Piecewise-linear functions with vertices at -1.5, -1, 0, 1, or 1.5. These functions provide wider coverage
for large error/delta values, ensuring better representation of uncertainties.

. X—-a Cc-—=X
HtermX = max 0, min =—=, =—=

b-a c-b
Negative: a=-1.5,b=-1,¢c=0
. Zero:a=-1,b=0,c=1

Positive: a=0,b=1,c=1.5
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2243 Rule Base
Encode specialist knowledge to fine-tune predictions.

Standard Rules (3 Rules):
Connect simple error-delta combinations (e.g., Negative error + Negative delta

— Low output).

- If e is Negative AND o is Negative — Output = Low.
- If e is Zero AND ¢ is Zero — Output = Medium.

- If e is Positive AND 6 is Positive — Output = High.

Extended Rules (Methods 4, 6):
Include subtle interactions (e.g., Negative error + Positive delta — Low output) for intricate situations.

- Adds 5 additional rules (e.g., If e is Negative AND ¢ is Positive — Output
= Low).

2.2.4.4 Inference & Defuzzification
Transform fuzzy rules into executable decisions.

Rule Activation:
Calculate rule strength with the product t-norm (multiply input MFs). For rule i, compute the strength
using the product t-norm:

ai = Maj € x MBj O

Aggregation:

Add activated output MFs to form a composite fuzzy set. Combine outputs using sum aggregation:
uagay =" ai ucy -i

Centroid Defuzzification:

Calculate the centroid of the aggregated output to obtain a crisp value Yerisp

1y Haggydy

yerisp CELTT
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0 aggydy
2.2.45 Final Decision

Translate fuzzy output into class labels.
Final Class Assignment:
Assign class 1 (female) if ycrisp > 0.5, else 0 (male). Ensures binary alignment with the original task.

]
U1, i Yerisp >
Einal Class = 1, ifyeisp > 0.5 Female

0, otherwise Male

2.2.4.6 Enhanced Techniques
Contrast Enhancement (Method 2): CLAHE in LAB Color Space Enhance image quality by increasing
local contrast without compromising on color fidelity. Technical Details:

LAB Color Space:

- Splits image into three channels:
- L (Lightness): Altered to increase contrast.

- A and B: Preserve color data, left as is.
CLAHE Algorithm:

- Tile Processing: Split the L channel into tiny tiles (e.g., 8x8).
- Histogram Equalization: Reallocate pixel intensities within each tile to enhance contrast.
- Contrast Limiting: Clip histogram bins to avoid noise enhancement (clip limit = 3.0).

- Bilinear Interpolation: Smooth tile boundaries to prevent artifacts.

Formula: For each tile in the L channel:

CLAHEX, y = EqualizeloriginaiX, y with clip limit Improved images enhance feature extraction (e.g., VGG16),
providing more discriminative model inputs.

Reinforcement Learning (Method 3): Q-Learning for Dynamic Fuzzy Adjustment

Optimize trust in fuzzy logic predictions through adaptive decision-making.

Technical Details

State (s): Tuple y™, p, where:

. y™": Predicted class of base model (0: male, 1: female).
p: Probability estimate (confidence) by base model.
Actions (a):
. 0: Keep base model prediction (y™).
1: Apply fuzzy-adjusted prediction.

Reward (r):

r =1 if final prediction corresponds to true label.
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r = -1 if wrong.

Q-Learning Update Rule:
Qs,a<Qs,aa rymaxQs,a -Qs,a

where:

a: Learning rate.

y: Discount factor.

Qs, a: Expected utility of taking action a in state s.
Qs,a<Qs,aa rymaxQs,a -Qs,a s
Learning Rate (a = 0.1): Regulates update size (conservative learning).

Discount Factor (y = 0.9): Favors delayed rewards (long-term optimization). Integration: The Q-table
learns best actions (accept/reject fuzzy outputs) to achieve maximum accuracy over time.
Hyperparameter Tuning (Method 2) Randomized Search
Find the best the neural network settings for improved images.
Technical Details:
Parameter Distributions:
Activation Functions: ReLU (non-linear) or tanh (smooth gradients).
Learning Rates: Log-uniformly sampled from 10-4, 10-3.

. Hidden Layer Sizes: Combinations such as (256), (512), or (256, 256).

Randomized Search Process:
Sampling: Randomly choose 100 hyperparameter sets.
. Cross-Validation: Train on 4 folds, validate on 1 fold.

Scoring Metric: Maximize validation accuracy.

8* = argmax AccuracyDyar; 6

Improves MLP accuracy on CLAHE-processed features to make strong baseline estimates for fuzzy logic.

225 Evaluation
Three key metrics were used to measure performance:

Accuracy = _ PN o\

icion = TP
Precision = TPEP

— TP
Recall = TPEN

Note: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.

2251 Cross-Validation Strategy Stratified 5-Fold Cross-Validation:
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Ensures each fold retains the original class distribution (male/female).

Reduces bias and variance in performance estimates.

Reported results include mean + standard deviation across folds.

2252 Method-Specific Evaluation
Method 1: Gaussian MF-based Neural Fuzzy System Process:

Extracted features through VGG16 + Dense(256) were used to input a fuzzy system with
Gaussian MFs.

Tested on every fold to calculate accuracy, precision, and recall.

Outcome:

Exhibited balanced performance but poor adaptability to extreme errors. Method 2: Contrast
Enhancement + Hyperparameter Tuning

CLAHE Effect:

Compared accuracy, precision, and recall with and without CLAHE preprocessing.
CLAHE enhanced accuracy by ~ 5% by highlighting minor anatomical features.
Hyperparameter Tuning:

RandomizedSearchCV tried 100 combinations (activation functions, learning rates, layer
sizes).

Best parameters:
hidden_layer_sizes=(512,), activation=relu, learning_rate=adaptive.

Method 3: Reinforcement Learning (RL) with Q-Learning Q-Table Dynamics:

States: y", p, where:

- y": Predicted class of the base model (0 = male, 1 = female).

- p: Probability estimate (confidence score) of the base model.
. Actions: {0 (keep prediction), 1 (use fuzzy-adjusted prediction) }.
. Reward:

- r = 1 if final prediction is correct.

- r = -1 if final prediction is incorrect.

Result:

Reinforcement learning improved recall by 8% by adaptively correcting uncertain predictions.

2.25.3 Methods 4 and 6: SVM with Expanded Fuzzy Rules Rule Expansion:

. Expanded from 3 to 6 rules (e.g., penalizing high error when precision is low).
Decreased false positives, improving precision by 6%.

SVM Kernel:

Linear kernel recorded highest F1-score due to high-dimensional features.
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2254 Method 5: Custom CNN End-to-End Learning:
Trained from scratch without pretrained weights.
Recorded 89% accuracy, comparable with VGG16-based approaches.

Advantage: Removed reliance on external feature extractors.

3. Results
Method alidation verage verﬁge
ccuracy Irecision eca
Neural FUZZy SYyStem 94.0Z% * l.4(“70i(2é({/(‘)’/0 Iglgé(‘%’/o s
Contrast+MLP 86.28% + 2.81%91.15% +33.05% +
Fuzzy+RL 70 110/0 + 3 850/07‘]cj %&5/0 +22'6'%}(3’/0 +
. 0 X Oo. 0 0 T 0 o
y /b £ 3.85%0 4, 4555,
SVM-+Extended Fuzzy [89.76% + b.b?%gﬁg%/o 18%8%/0 +
+ 88.60% + 2.79% 204 +84 23% +
CNN+Fuzzy () o%lb%(% () E%ﬁb%o
?&/I}(HE tended Fuzzy94.93% + 3.71%91.79% +98.00% +
efined) B.73% 1.50%

Table 1: Performance comparison of different methods.

Performance Analysis Summary
1. Top Performing Methods and Accuracy

Method 6 (SVM with Extended Fuzzy, Refined) achieved the highest performance:
- Validation/Test Accuracy: 94.93% + 3.71%

Method 1 (Neural Fuzzy System) followed closely with:

- Validation Accuracy: 94.62% + 1.47%

. This demonstrates the effectiveness of Gaussian Membership Functions in handling
uncertainty.

2. Precision-Recall Trade-offs

Method 1 recorded the highest precision at 97.17% + 1.29%, effectively minimizing
false positives.

Methods 4 and 6 achieved perfect recall (98%0), critical for applications such as:
- Forensic analysis
- Clinical diagnostics
This ensures no positive cases are missed, which is essential in high-stakes scenarios.

3. Impact of Architectural Choices and Reinforcement Learning Limitations

. Method 2 (Contrast+MLP) showed moderate performance (86.28% =+
2.81%), indicating that CLAHE’s benefits are context-dependent.

Method 5 (CNN+Fuzzy) achieved a solid accuracy of 88.60% without
pretrained weights, validating end-to-end learning.
. Method 3 (Fuzzy+RL) underperformed significantly (70.11% + 3.85%), likely due to:
- Ineffective reward function design
- Poor exploration-exploitation balance
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Performance Metrics by Method
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Figure 3: Performance Metrics

4. Conclusions

This research validates the effectiveness of hybrid intelligent systems in gender classification using dental
panoramic radiographs. By integrating fuzzy logic with machine learning, these systems manage uncertainty
and improve robustness. The main conclusions are as follows:

1. Optimal Performance

. Method 6 (SVM with Extended Fuzzy Rules) achieved the highest overall accuracy
(94.93%) and high recall (98%0), making it suitable for sensitive applications such as forensic identification,
where false negatives must be avoided.

. Method 1 (Neural Fuzzy System) recorded the highest precision (97.17%0), reducing false
positives and thus ideal for high-confidence scenarios.

2. Trade-offs

. Methods using long fuzzy rules (e.g., Methods 4 and-6) prioritized recall, while Gaussian
membership functions (Method 1) balanced between preci- sion and recall.

. Method 3 (Fuzzy+Reinforcement Learning) underperformed, indicating limitations in
adaptive reward function design.

3. Clinical Relevance

. The proposed hybrid systems outperformed state-of-the-art deep learning models (e.g.,

ResNet, InceptionVV3) by 5-13%, demonstrating their practical potential in clinical and diagnostic imaging
applications.

Future Work and Research Gaps

Several directions are identified to enhance the proposed hybrid systems and ensure clinical, ethical, and
real-world readiness:

1. Reinforcement Learning Optimization
. Redesign the reward function in Method 3 to dynamically balance recall and precision.
. Explore advanced exploration-exploitation strategies such as -greedy decay

and Thompson sampling.

2. Generalizability and Bias Mitigation
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Evaluate models on diverse, multi-ethnic datasets to reduce geographic and demographic

biases.

Integrate federated learning for privacy-preserving model training across decentralized
dental data sources.

3. Precision—Clinical Standards Gap

Incorporate ensemble fuzzy logic systems or attention mechanisms to surpass 95%
precision, aligning with forensic standards.

Develop hybrid loss functions that penalize false positives more aggressively.

4. Computational Efficiency
Optimize Method 6 for real-time deployment using lightweight SVM variants or pruning
techniques.

Leverage hardware acceleration (e.g., FPGA, GPU) to improve inference speed for CNN-
based approaches (Method 5).

5. Ethical and Explainable Al
Conduct fairness audits to ensure equitable performance across demo- graphic
subgroups.

Enhance explain-ability of fuzzy rules to improve clinician trust, possibly using saliency
maps of key dental landmarks.

6. Real-World Validation

. Collaborate with dental clinics to conduct live validation within actual diagnostic
workflows.

. Study human-Al collaboration, focusing on how dentists interpret and in- teract with

fuzzy logic outputs.

This research brings Al innovation to clinical needs, but there are still challenges of generalization,
accuracy, and real-world uptake. Future research needs to focus on ethical Al, computational efficiency, and
robust validation to translate these hybrid systems into effective dental diagnostic tools.
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