IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

"AI-Powered Assistive System For The Visually Impaired"

"Empowering self-reliance with cutting-edge technology"

Prof. Mrs. A. A. Salokhe

Deepak Kumawat, Shubham Potdar, Vyankatesh Patil, Kartik Gavali, Sanket Chindarkar Department of Computer Science and Engineering D Y Patil College of Engineering and Technology, Kolhapur, India

Abstract: Millions of individuals worldwide experience visual impairments that significantly impact their daily lives. This project introduces an AI-Powered Assistive System aimed at addressing these challenges by using cutting-edge technologies. By incorporating real-time object detection, face recognition, and text-tospeech capabilities, the system provides intuitive auditory feedback to help visually impaired users navigate their surroundings more effectively. With advanced integration of machine learning, computer vision, and a user-centric voice interface, the solution fosters independence and enhances the quality of life for users. This initiative strives to redefine assistive technology, promoting accessibility and empowerment.

1. Introduction

Individuals with visual impairments encounter a range of challenges, such as navigating unfamiliar environments, recognizing objects, and engaging in social interactions. Traditional aids, like walking sticks or guide dogs, provide limited support and do not offer real-time feedback, making these tasks even more difficult. To address these issues, this project proposes the development of an AI-powered assistive system designed to enhance environmental awareness and improve interaction abilities.

The proposed system serves as an integrated solution, offering real-time object detection, facial recognition, and text reading, all accessible through a voice-controlled interface. By utilizing cutting-edge technologies in computer vision and machine learning, this project aims to create a transformative tool that helps users gain greater independence and confidence in their daily activities. Through advanced features and intuitive design, the system seeks to empower visually impaired individuals, enabling them to interact more effectively with their surroundings. Ultimately, this project envisions a future where technology enhances the autonomy and quality of life for individuals with visual impairments.

2. METHODOLOGY

The growing complexity of challenges faced by individuals with visual impairments calls for innovative solutions to improve their independence and quality of life. People with visual disabilities often struggle with navigating unfamiliar environments, identifying objects, and engaging in social interactions. Traditional tools, such as walking sticks and guide dogs, offer limited support and lack real-time feedback. To address these issues, we propose the development of an AI-powered Assistive System designed to enhance environmental awareness and improve interaction capabilities. Our proposed system functions as an all-in-one solution to help visually impaired individuals navigate their surroundings confidently. It leverages advanced technologies in real-time object detection, face recognition, and text reading, all integrated into an intuitive voice-controlled interface. By combining cutting-edge computer vision and machine learning, the system empowers users to

gain greater independence and autonomy. The integration of real-time feedback, secure data processing, and user-friendly features aims to simplify daily tasks, improve interactions, and foster a more inclusive experience for individuals with visual impairments. This project marks a significant step in bridging the gap between technology and accessibility, improving the overall quality of life for visually impaired individuals.

3. DATA AND SOURCES OF DATA

For user experience, key metrics such as task completion rates, navigation accuracy, and user satisfaction are tracked through real-time data analytics and feedback from users. A cost-benefit analysis evaluates the expenses related to the development and maintenance of the AI-powered Assistive System, comparing them with the potential benefits such as enhanced independence, reduced reliance on caregivers, and improved daily functionality. These insights are gathered from user surveys and feedback. Additionally, scalability and integration are assessed by testing the system's performance in diverse environments and its ability to integrate with other assistive technologies, using load tests and feedback from users in real-world scenarios. This comprehensive approach ensures the system's effectiveness, security, and adaptability.

- The evaluation of the AI-powered Assistive System focuses on key areas to measure its overall impact and performance.
- Operational efficiency is assessed by analyzing improvements in navigation, object detection accuracy, and overall user independence, using data from the system's real-time interactions and user feedback
- Data transparency is evaluated by reviewing the accuracy of text recognition, face identification, and environmental data processing, with insights drawn from system logs and input from visually impaired users.
- Platform security is monitored by reviewing system access logs, security protocols, and incident reports to ensure that user data is securely handled and protected.

3.1 THEORETICAL FRAMEWORK

3.1.1 BLOCK DIAGRAM

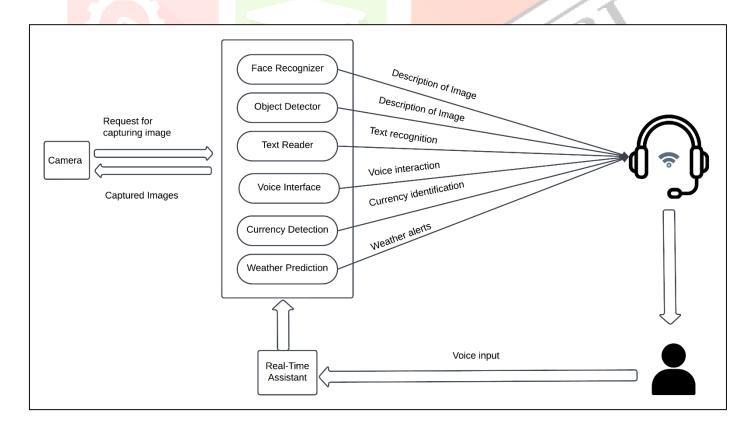


Figure 1.1: System Architecture

a747

3.1.2 FLOW CHART

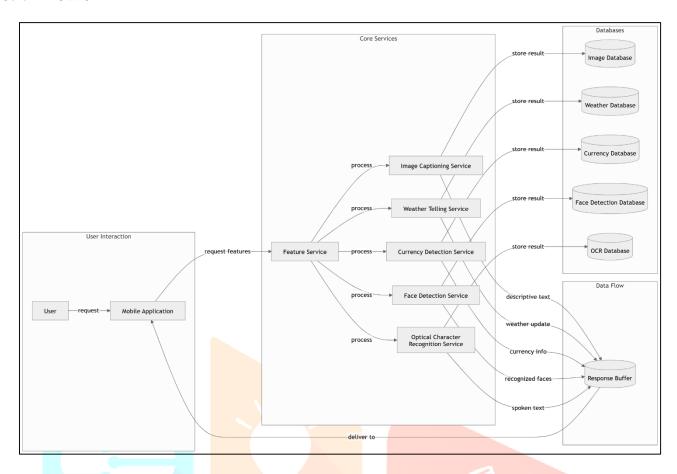


Figure 1.2: Operational Flow of AI-Powered Assistive System

3.1.3 FACTORS SPECIFICATION

1. Face Recognition

This module helps users identify people around them by recognizing and labeling familiar faces, enhancing social interactions.

- Identification of Known Faces: Announces the names of recognized individuals to facilitate social engagement.
- Name Tagging: Prompts users to assign names to unfamiliar faces for future recognition.
- Face Database: Stores and recalls recognized faces for easier interaction.

Technologies Used: Convolutional Neural Networks (CNNs) for facial recognition and machine learning for database management.

2. Object Detection

This module detects surrounding objects and obstacles, providing real-time auditory alerts to assist visually impaired users in navigating their environment safely and independently.

- Environmental Mapping: Identifies objects such as walls, furniture, and pathways to guide users through their surroundings.
- Obstacle Detection: Alerts users about hazards like stairs, potholes, or other obstacles in their path.
- Dynamic Updates: Continuously informs users of moving objects such as vehicles or pedestrians.

Technologies Used: Computer Vision technologies (e.g., YOLO, Faster R-CNN) for object detection, combined with deep learning algorithms for real-time tracking of obstacles.

3. Text Reader

Designed to provide visually impaired users with immediate access to written information, this module bridges the accessibility gap for printed material.

- Text Detection: Recognizes written content on various surfaces, such as signs, books, or documents.
- Instant Reading: Translates detected text into spoken words in real time.
- Accessibility Enhancement: Makes previously inaccessible written information available to users, such as menus, notices, and more.

Technologies Used: Optical Character Recognition (OCR) for text extraction, combined with Natural Language Processing (NLP) for speech synthesis.

4. Voice Interface

The Voice Interface Module enables a hands-free experience, allowing users to control the system through voice commands.

- Voice Command Recognition: Understands and processes verbal instructions from users.
- Text-to-Speech Output: Converts system responses into audible feedback for the user.
- Intuitive Interaction: Facilitates smooth, voice-driven communication between the user and the system.

Technology Used: Automatic Speech Recognition (ASR) for command recognition, paired with Text-to-Speech (TTS) for generating spoken responses.

5. Currency Detection

This module assists users with recognizing different currency denominations, ensuring safe and accurate handling of money.

- Currency Identification: Detects and announces the value of different currency notes in real time.
- Secure Transaction Handling: Supports accurate financial transactions, providing clear information for users.

Technologies Used: Machine learning and image recognition models for real-time currency detection.

6. Weather Telling

The Weather Telling Module delivers timely weather updates, helping users plan their outdoor activities with safety in mind.

- Live Weather Data: Provides current weather information such as temperature, precipitation, and severe weather warnings.
- Outdoor Safety: Advises users on weather conditions to ensure safe outdoor decisions.

Technologies Used: Weather APIs (e.g., OpenWeatherMap), integrated with Natural Language Processing (NLP) for verbal weather updates.

4. RESEARCH METHODOLOGY

1. Requirement Analysis

- Identify the specific needs of visually impaired users, emphasizing features like real-time obstacle detection, face recognition, text-to-speech reading, and voice-activated controls.
- Engage in surveys and one-on-one interviews to understand user challenges and expectations, with a focus on simplicity, accurate responses, and seamless integration into everyday life.

2. System Design

- Create a modular system architecture using advanced AI frameworks to enable efficient processing. Design user-friendly interfaces that ensure effortless navigation and interaction.
- Incorporate robust methods for secure data storage and retrieval to protect user information

3. Module Development

- Develop functionalities for object recognition and obstacle detection to assist in environmental navigation.
- Build dedicated modules for text reading, face identification, and voice-enabled system control.
- Enhance data handling processes to deliver fast and real-time responses.

4. Integration and Testing

- Combine all modules into a cohesive system to ensure seamless operation.
- Conduct rigorous testing of each module to confirm functionality, accuracy, and reliability.
- Perform user trials to gather feedback and make necessary refinements based on their experiences.

5. Deployment

- Launch the application on accessible platforms for visually impaired users.
- Ensure device compatibility to reach a diverse user base.
- Provide clear training materials and ongoing user support to encourage adoption and ease of use.

6. Monitoring and Updates

- Implement analytics to track system usage and performance metrics.
- Release updates regularly to incorporate user feedback, enhance usability, and address any identified issues.

5. CONCLUSION

In conclusion, The AI-Powered Assistive System provides an innovative approach to addressing the difficulties encountered by visually impaired individuals. By leveraging advanced technologies such as machine learning and computer vision, the system enhances users' spatial awareness, mobility, and autonomy. This initiative holds the potential to greatly improve the quality of life for its users, fostering a more inclusive and empowering environment for individuals with visual impairments.

6. REFERENCES

[1] Kanchan Patil, Avinash Kharat, Pratik Chaudhary, Shrikant Bidgar, Rushikesh Gavhane, "Guidance System for Visually Impaired People" 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) | 978-1-7281-9537-7/20/\$31.00 ©2021 IEEE DOI: 10.1109/ICAIS50930.2021.9395973

https://ieeexplore.ieee.org/document/9395973

[2] Shubham Melvin Felix, Sumer Kumar, A. Veeramuthu, "A Smart Personal AI Assistant for Visually Impaired People" 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) | ©2018 IEEE DOI: 10.1109/ICOEI.2018.8553750

https://ieeexplore.ieee.org/document/8553750?signout=success

[3] Heetika Gada1, Vedant Gokani2, Abhinav Kashyap3, Amit A. Deshmukh4 "Object Recognition for The Visually Impaired" 2019 International Conference on Nascent Technologies in Engineering (ICNTE 2019)

https://ieeexplore.ieee.org/document/8946015

[4] Syed Sultan S1, Deepakraj B.K2, Alfaris A3, Shagar Banu4, J.Rahila5, P.Anad6, "Visual Assistance for Blind Person by Using Machine Learning Technology" 2023

https://www.researchgate.net/publication/374087844 Visual Assistance for Blind Person by Using Mac hine Learning Technolog