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Abstract:  For effective energy management and resource planning, accurate electricity demand forecasts are 

essential. Time series forecasting methods like Exponential Smoothing (ES) and ARIMA models have grown 

popular recently because of their capacity to identify complex seasonal trends in data. This study aims to 

compare the performance of different wavelet families in conjunction with ES and ARIMA models for 

electricity demand forecasting and we are able to observe the reverse effect of wavelet. The results are 

compared to assess the accuracy and effectiveness of different wavelets in improving the forecasting 

performance of ES and ARIMA models. The findings of this study contribute to a better understanding of the 

applicability of wavelet-based approaches for electricity demand forecasting. However, it's important to note 

that the choice between ARIMA and Exponential Smoothing ultimately depends on the specific characteristics 

of the time series data and the forecasting objectives. For complex and noisy data, ARIMA with wavelets 

emerges as a robust and effective forecasting method, demonstrating superior performance in our analysis. 

 

Index Terms - Time series analysis, exponential smoothing, ARIMA, wavelet analysis, KPI. 

I. INTRODUCTION 

The nation's electricity demand is driven primarily by its population size, economic activities, technological 

advancements, and changing consumer preferences [18]. The electricity demand in the United States has been 

shaped by a multitude of factors, resulting in a complex and ever-evolving landscape [19]. With a steadily 

growing population and continuous economic expansion, the United States experiences an increasing need 

for electricity to meet the rising demands of households, businesses, and industries [20]. Energy efficiency 

initiatives have been a key focus area for the United States in recent years [18]. It is important to note that the 

electricity demand landscape is continually evolving, subject to fluctuations based on technological 

advancements, government policies, market dynamics, and unexpected events [18]. 

Accurate electricity demand forecasts help utility companies and power grid operators plan their resources 

effectively. By knowing the expected demand in advance, they can ensure sufficient power generation, 

transmission, and distribution capacity to meet the needs of consumers without any shortages or overloads 

[13]. Forecasting demand allows power providers to optimize their energy mix and schedule generation 

accordingly, reducing costs and minimizing environmental impact. Sudden spikes or drops in demand can 

lead to disturbances, blackouts, or grid failures [50]. Forecasts help in planning and implementing load 

balancing strategies to ensure a consistent and stable power supply. Electricity demand forecasts are vital for 

policymakers and researchers to understand energy consumption patterns, identify trends, and assess the 

impact of climate change on electricity usage [12]. This information can influence the formulation of energy 

policies and environmental regulations. 
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In order to accurately predict future values, time series analysis and forecasting employ a variety of modeling 

techniques to examine the historical relationship between the variables. The widely used statistical models in 

time series analysis, namely the Box-Jenkins based ARIMA (Autoregressive Integrated Moving Average) and 

ES (Exponential Smoothing) models, cover a wide range of patterns, including stationary, non-stationary, and 

seasonal (periodic) time series [30,32,52]. That being said, in non-linear situations—that is, when the data is 

not a linear function of time-the Box-Jenkins approach falls short [2,4,24,30]. Wavelet analysis is a great way 

to find high-frequency components in time series data for effective forecasting of non-linear data 

[9,10,14,28,31,33,39]. Using a discrete wavelet, time series of various sizes are split up into separate 

component series that can be managed separately for forecasting [25,35,37,40,45,47,49,53]. Wavelets provide 

much more prediction flexibility and refinement than previous methods could [11,16,23,54,62]. 

In order to forecast the demand for electricity in the United States, the current study focuses on developing 

hybrid models that account for the dynamic nature of the provided time series data. When managing these 

types of time series, hybrid modeling can be an effective technique [29,53,63]. The USA electricity demand 

dataset was used for this, and "demand" was chosen as a variable from among all other provided variables, 

including coal, gas, hydro, clean, bio-energy, CO2 intensity, fossil and solar [Data Source: https://ember-

climate.org/data-catalogue/monthly-electricity-data/]. 

 

II. METHODOLOGY 

In this paper, we have used Sigma XL and MATLAB software for our research purpose. We took monthly 

time series data of USA electricity demand from https://ember-climate.org/data-catalogue/monthly-

electricity-data/ over the period of 01-January-2001 to 01-March-2023 which includes 267 observations in 

total. The dataset is divided into training and testing phase [26]. In the former phase, we made predictive 

models for each of the decomposed component of the original time series. Following steps are used in the 

proposed technique (figure 1):  

 

Figure 1: Proposed Technique 

Here, two approaches are involved- First, out of total 267 readings, 243 are used for training purpose and 

remaining 24 are used for testing purpose (which forms 90% & 10% training and testing phase). Second, out 

of total 267 readings, 207 are used for training purpose and remaining 60 observations are used for testing 

purpose (which forms 77% & 23% training and testing phase). The idea behind these two approaches is to 

check the variations in the models if any.  
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2.1 Wavelet Analysis 

Wavelets are compact support localized functions with zero mean that can analyze transient and non-periodic 

signals [8,36,41,42]. 

A function Ψ(x)𝜖 𝐿2(𝑅) is called wavelet if it satisfies the following properties: 

1) ∫ 𝛹(𝑥)𝑑𝑥 = 0
∞

−∞
                                                                        … (1) 

2) 𝐶𝛹 = ∫
|𝛹̂(𝜔)|2

|𝜔|

∞

−∞
< ∞                                                         … (2) 

where 𝛹̂(𝜔) denotes Fourier transform of 𝛹(𝜔). Basically, wavelets are a family of functions constructed by 

dilations and translations of a single function 𝛹(x)𝜖 𝐿2(𝑅) known as ‘Mother wavelet’ (where the scaling 

function is called ‘Father wavelet’). The family of wavelets 𝛹𝑎,𝑏(𝑥) are defined as: 

𝛹𝑎,𝑏(𝑥) = |𝑎|
−1

2⁄  𝛹 (
𝑥−𝑏

𝑎
)  ; a, b 𝜖𝑅,  𝑎 ≠ 0                … (3)        

where ‘a’ is a scaling parameter and ‘b’ is translation parameter. 

For discrete wavelet decomposition of time series {𝑓(𝑡): 𝑡 = 1, 2, 3, . .. }, the mother wavelet function 𝛹𝑗,𝑘 

and the father wavelet function 𝜑𝐽,𝐾 are defined respectively 

𝛹𝑗,𝑘(𝑥) = 2
 

−𝑗
2⁄
 Ψ(2

 

−𝑗
𝑥 − 𝑘)                                 …(4)        

𝜑𝐽,𝑘(𝑥) = 2
 

−𝐽
2⁄
 Ψ(2

 

−𝐽
𝑥 − 𝑘)                           …(5)        

The approximation coefficients 𝛼𝐽,𝐾 are obtained by convoluting the scaling coefficients 𝜑𝐽,𝐾 with 𝑓(𝑡) and 

convolution with 𝑓(𝑡) of the wavelet function 𝛹𝑗,𝑘 gives the detailed coefficients which are given as below 

𝛼𝐽,𝑘 = ∫ 𝑓(𝑡)𝜑𝐽,𝑘𝑑𝑡
∞

−∞
                                            … (6)              

𝛽𝑗,𝑘 = ∫ 𝑓(𝑡)𝛹𝑗,𝑘𝑑𝑡
∞

−∞
                                       … (7)        

Using above integrals, decomposed series applicable to continuous time series 𝑓(𝑡) is given by  

𝑓(𝑡) = ∑ 𝛼𝐽,𝑘𝑘∈𝑍 𝜑𝐽,𝑘(𝑡) + ∑ ∑ 𝛽𝑗,𝑘𝑘∈𝑍
𝐽
𝑗=1 𝛹𝑗,𝑘(𝑡)                           … (8)        

Since the time series data under study is discrete and is of finite length, so the discretized time series 𝑦(𝑡) of 

length K=2j is given by  

𝑓(𝑡) = ∑ 𝛼𝐽,𝑘
2𝐽−𝑘−1
𝑘=−∞ 𝜑𝐽,𝑘(𝑡) + ∑ ∑ 𝛽𝑗,𝑘

2𝐽−𝑘−1
𝑘=−∞

𝐽
𝑗=1 𝛹𝑗,𝑘(𝑡)                  … (9)        

The decomposition of 𝑓(𝑡) into approximation and detail components is also classified in Figure 2 [48]. 

 

Figure 2 

 

2.2 Forecasting Time Series Models 

 

2.2.1 ARIMA Model 

The ARIMA model is the best econometric model available; it outperforms the ARMA, MA, and AR models 

(Autoregressive moving averages, moving averages, and autoregressive respectively). The ARIMA model 

takes its cues from the 1960 Box-Jenkins Model, which predicts future time series values based on past data. 

Parameter estimation, model diagnostic checking, and model identification are the three primary phases of 

the ARIMA modeling approach. Model identification is the step that comes before parameter estimation, 

when the time series for stationarity and seasonality are modeled. Time series stationarity can be evaluated 

using an autocorrelation function (ACF) plot. Application of a differencing transformation can yield stationary 
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data in the event that the time series is non-stationary. The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots can be generated using seasonal differencing to model seasonality. 

Finding the values of the parameters p and q is another benefit of these plots [5,7]. By using maximum 

likelihood, a widely used evaluation technique, one can estimate the parameters of the suitably chosen model. 

The model's overall adequacy is lastly confirmed using the Ljung and Box test to make sure that no additional 

time series modeling is required [38]. 

An ARIMA (p, d, q) model using lag polynomial L is expressed  

(1 − ∑ 𝜑𝑖𝐿
𝑖𝑝

𝑖=1 )(1 − 𝐿)𝑑 = (1 + ∑ 𝜃𝑗𝐿𝑗𝑞
𝑗=1 )𝜀𝑗                            … (10)        

where the non-negative integers p and q are the orders of autoregressive and moving average polynomials 

respectively; d is the non-seasonal differencing required to make data stationary; f (t) is the value of 

observations and ɛ t is a random error at time t; 𝜑𝑖 and 𝜃𝑗 are the coefficients. 

 

2.2.2 Exponential Smoothing Model 

The simple exponential smoothing (SES) was initially introduced by Muth, who demonstrated that SES offers 

optimal forecasts for a random walk, with added noise [22]. Afterwards, Pagels divided trends and seasonal 

patterns into two categories: multiplicative/nonlinear and additive/linear [56]. In general, exponential 

smoothing techniques are thought of as a collection of techniques for forecasting certain kinds of univariate 

time series data [56]. Box and Jenkins, Roberts, Abraham, and Ledolter demonstrated that some linear 

exponential smoothing techniques can be thought of as special cases of ARIMA models, which advanced the 

development of a statistical framework for exponential smoothing [44,61]. This approach to time series 

forecasting is basically used when the data show neither a trend nor a seasonal pattern [57,56]. The equation 

of simple exponential smoothing is given by: 

𝑆𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝑆𝑡−1 = 𝑆𝑡−1 + 𝛼(𝑋𝑡 − 𝑆𝑡−1)     … (11)        

Additionally, the double (Holt's trend corrected method) exponential smoothing model is used when the data 

exhibits a linear trend and no seasonal pattern [57,27,56]. Adding a term to account for the possibility that a 

series will exhibit a trend is the main idea behind double exponential smoothing [57,27,56]. The equations 

are given by: 

S1 = X1, b1 = X1-X0,  𝐹𝑜𝑟 𝑡 > 1, 

 𝑆𝑡  =  𝑋𝑡  +  (1 –  α)(𝑆𝑡−1  +  𝑏𝑡−1)     … (12) 

 𝛽𝑡  =  β(𝑆𝑡 –  𝑆𝑡−1)  +  (1 –  β)𝑏𝑡−1      … (13)        

Here, 𝑆𝑡 = smoothed statistic (simple weighted average of current observation 𝑋𝑡),  𝑆𝑡−1= previous smoothed 

statistic, 𝛼 = smoothing factor of data; 0 < 𝛼 < 1, 𝑡 = time period, 𝑏𝑡 = best estimate of trend at time 𝑡 and 𝛽 

= trend smoothing factor; 0 < 𝛽 < 1 [57,27,56]. 

The triple (Holt-Winter's exponential) exponential smoothing model is used when the data exhibits both a 

linear trend and a seasonal pattern [44,21,61,57]. This approach has been employed by us for our research 

purpose. The equations are given by 

𝑆0 = 𝑋0                                                    … (14)        

𝑆𝑡 = 𝛼
𝑋𝑡

𝐶𝑡−1
+ (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1)       … (15) 

𝑏𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽)𝑏𝑡−1          … (16)        

𝑐𝑡 = 𝛾
𝑋𝑡

𝑆𝑡
+ (1 − 𝛾) 𝑐𝑡−1                          … (17) 

where, 𝑐𝑡 = sequence of seasonal correction factor at time 𝑡 and 𝛾 = seasonal change smoothing factor; 0 <
𝛾 < 1 [21,61,57]. 
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2.2.3 Hybrid Time Series Prediction Model 

Since wavelet decomposition techniques have varying propensities to handle linear and non-linear data 

features, the coupled models put forth in this work comprise ARIMA and ES models' forecasting on time 

series data that has been refined by wavelet decomposition techniques. Through the modeling of both linear 

and non-linear data components, these coupled models can enhance forecasting performance [43]. Time-series 

data 𝑓(𝑡) is first decomposed into approximations (𝐴𝑗) and detail (𝐷𝑗) coefficients (Section 5.1) in the wavelet 

decomposition method. These coefficients can be used as independent series for forecasting, and each of these 

series is then modeled and forecasted using a suitable ARIMA & ES model. The predicted approximations 

(𝐴𝑗̂) and detail (𝐷𝑗̂) coefficients so obtained are summed to obtain forecasted data 𝑓(𝑡)̂, expressed as 

𝑓(𝑡)̂ =   𝐴𝑗̂ + 𝐷𝑗̂ ; j = 1, 2, 3, ...                  … (18)        

 

III. RESULTS AND DISCUSSION 

3.1 Time Series Analysis 

Many time series methods begin with a stationarity check of the data. Autocorrelation function (ACF) and 

partial autocorrelation function (PACF) plots can be used to assess non-stationarity in time series data, which 

is indicated by rapid changes. The time series is determined to be non-stationary by a slow decaying ACF 

plot, which is eliminated by differencing transformation to produce stationary data [7]. After checking 

stationarity, the next step is to determine the order of the ARIMA model parameter, which can be determined 

by the ACF plot of differenced time series. Then, an appropriate ARIMA model is fitted to data that generates 

future values of time series data. So, in both the approaches when wavelets were not used, ARIMA (1,1,1) 

(Figure 4,Figure 5,Figure 6 and Figure 7) is best fit for our dataset type. 

Similarly, our data has both linear trend and seasonal pattern, so we used Holt-Winter’s exponential smoothing 

model with parameter estimates α-level smoothing and γ-seasonal smoothing (Table 1) in both the approaches 

and models are bases on Akaike information criterion (AIC) 

 

Table 1: Showing the values of parameter estimates in Exponential Smoothing Model (Holt-Winter) 

ES- 

Approach-

I 

α- Level 

Smoothing 

γ- Seasonal 

Smoothing 

ES- 

Approach-II 

α- Level 

Smoothing 

γ- Seasonal 

Smoothing 

Without 

Wavelet 

0.362 0.0001 Without 

Wavelet 

0.362 0.0001 

With 

Wavelet 

0.9999 0.0001 With 

Wavelet 

0.9999 0.0001 

 

 

3.2 Wavelet Decomposition 

The mother wavelet, its level, and the decomposition order are critical factors to consider when applying 

wavelet decomposition to time series. Although there are many families of wavelets for decomposition, one 

of the significant wavelet types with unique benefits is the Coiflet wavelet. The Coiflet wavelet is used to 

break down time series data on electricity demand in the United States. The approximations consist of details 

that represent high-frequency components and low-frequency parts that show a trend. To obtain predicted 

components, an appropriate ARIMA and ES model are separately modeled for the approximation 𝐴3 and 

details 𝐷1, 𝐷2, and 𝐷3. The predicted outputs 𝐴3̂, 𝐷1̂, 𝐷2̂ 𝐷3̂are finally summed to obtain the forecasts of 

demand given in Eq.  

                   𝑓(𝑡)̂ =   𝐴3̂ + 𝐷1̂+𝐷2̂+𝐷3̂                                 … (12)        

where capped (^) symbol is used to denote predicted values. 
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Figure 3: Selection of Best Wavelet for Our Database 

So, here we tested approximately all the types of above wavelet available in the MATLAB tool box to denoise 

the signal then came to the result with full statistical analysis based on Akaike information criterion (AIC) 

that Coiflet wavelet is best for our research purpose (Figure 3). 

 

3.3 Hybrid Time Series Model 

Initially, various wavelet functions, such as Daubechies, Symlet, Coiflet, and Biorthogonal are applied to 

decompose the USA electricity demand dataset into different frequency components. The decomposed series 

are then reconstructed using selected wavelet coefficients to obtain denoised data. Subsequently, both ES and 

ARIMA models are applied to the original and denoised time series for forecasting purposes. The Coiflet 

wavelet comes out to be the best fit for this kind of dataset for both the approaches. 

Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ES) are models used for 

generating values independently or, in conjunction, with Wavelet decomposition [1,3,15,44]. In these models 

the data is first broken down into series using the Coiflet wavelet. Then both ARIMA and ES models are 

applied to each constituent series to create a forecast. Finally, the predicted values of the constituent series 

are added together to obtain the output of the model. In approach-I and approach-II, ARIMA (2,1,1) (See 

Figure 9) and ARIMA (2,1,5) (See Figure 10) are comes out to be the best models for the denoised dataset 

and are selected on the bases of Akaike information criterion (AIC) with the significance limit alpha = 0.05. 

The predictive performance hybrid models and ARIMA & ES models are compared finally to find the best 

model among them with least forecasting errors.  

For the Model evaluation we have used four standard error measures named as Key Performing Indicators 

(KPIs) and these are defined as: 

𝑅𝑀𝑆𝐸 =  √∑
(𝑦𝑖 − 𝑓𝑖)2

𝑛

𝑛

𝑖=1

 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑓𝑖|𝑛

𝑖=1

𝑛
 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑦𝑖 − 𝑓𝑖|

𝑦𝑖

𝑛

𝑖=1

 

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸

1

𝑛−1
∑ |𝑦𝑖 − 𝑦𝑖−1|𝑛

𝑖=2

 

Where 𝑦𝑖’s are the actual values,  𝑓𝑖’s are the forecasted values and n is the total number of observations. 
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3.3.1 Results and Discussion – Without Wavelet  

Table 2: ES on Original Time Series Data without using wavelet with Approach-I 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 8.58 13.62 

MAE 6.82 11.22 

MAPE 1.99 3.04 

MASE 0.67 1.11 

 

Table 3: ARIMA on Original Time Series Data without using wavelet with Approach-I 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 9.26 13.93 

MAE 7.42 11.54 

MAPE 2.17 3.14 

MASE 0.73 1.14 

 

Table 4: ES on Original Time Series Data without using wavelet in Approach-II 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 8.50 10.06 

MAE 6.75 8.07 

MAPE 1.98 2.40 

MASE 0.66 0.860 

 

Table 5: ARIMA on Original Time Series Data without using wavelet in Approach-II 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 9.43 10.14 

MAE 7.58 8.35 

MAPE 2.22 2.38 

MASE 0.74 0.85 
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Figure 4: Performance of ES (Holt-Winter Method) and ARIMA (1,1,1) without wavelet in Approach-I 

 

Figure 5 
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Figure 6: Performance of ES (Holt-Winter Method) and ARIMA (1,1,1) without wavelet in Approach-II 

 

 

Figure 7 

 

http://www.ijcrt.org/


www.ijcrt.org                                                 © 2024 IJCRT | Volume 12, Issue 9 September 2024 | ISSN: 2320-2882 

IJCRT2409047 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a439 
 

 

Figure 8 

The tables (Table 2, Table 3, Table 4, and Table 5) above, as well as Figure 8, make it abundantly evident 

that the Exponential Smoothing (ES) model outperforms the ARIMA model in nearly every KPI measure. 

However, in this case, the data is not denoised using wavelet. Let's now examine the results by applying the 

wavelet to the original time series data. 

 

3.3.2 Result and Discussion – With Wavelet 

Table 6: ES on Denoised Time Series Data using wavelet with Approach-I 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 3.25 11.77 

MAE 2.50 9.59 

MAPE 0.73 2.61 

MASE 0.28 0.82 

 

Table 7: ARIMA on Denoised Time Series Data using wavelet with Approach-I 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 2.74 9.86 

MAE 1.96 8.64 

MAPE 0.57 2.38 

MASE 0.22 0.78 

 

Table 8: ES on Denoised Time Series Data using wavelet with Approach-II 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 3.37 8.35 

MAE 2.58 7.06 

MAPE 0.76 2.05 

MASE 0.29 0.75 
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Table 9: ARIMA on Denoised Time Series Data using wavelet with Approach-II 

KPIs Training Phase (Values) Testing Phase (Values) 

RMSE 2.96 7.55 

MAE 2.16 6.28 

MAPE 0.64 1.80 

MASE 0.23 0.58 

 

 

Figure 9: Performance of ES (Holt-Winter Method) and ARIMA (2,1,1) without wavelet in Approach-I 

 

Figure 10: Performance of ES (Holt-Winter Method) and ARIMA (2,1,5) without wavelet in Approach-II 
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Figure 11 

The tables (Table 6, Table 7, Table 8, and Table 9) above, as well as Figure 11, ARIMA model outperforms 

the ES model in every KPI measure.  

 

3.4 Reverse Effect of Wavelet Over ES and ARIMA Models 

Here, we see that in testing phase ARIMA performing better than ES model when wavelets are applied. This 

is what we called as reverse effect of wavelet over ES and ARIMA model because if we refer to fig. 8, it is 

clearcut that ES is better than ARIMA but if we refer to figure 11, ARIMA is showing better results than ES 

which is the scenario of wavelets.  
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V. CONCLUSION 

Using time series data, we observed the ‘reverse effect’ of wavelet over the Exponential Smoothing (ES) and 

ARIMA model as when we perform these two models without using wavelets, ES is performing better than 

the ARIMA model but when the same data is denoised using wavelet, ARIMA comes out to perform better 

by giving less errors than the ES model. In practical applications where accurate time series forecasting is 

essential, particularly in domains such as finance, economics, and demand forecasting, our analysis suggests 

that ARIMA with wavelets may be the preferred choice. The combination of ARIMA's modeling capabilities 

and wavelet preprocessing enables it to deliver more accurate and reliable forecasts compared to Exponential 

Smoothing under similar conditions. 

 

VI. DATA AVAILABILITY 

The monthly USA electricity demand time series data that is used in this study is available for download from 

the site of Ember Climate with the given link https://ember-climate.org/data-catalogue/monthly-electricity-

data/  
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