

A Comprehensive Review On Mineral Admixtures In Concrete: Properties, Performance, And Applications

¹Rekha N

¹Lecturer,

¹Department of Civil Engineering,

¹Government Polytechnic Bellary, Karnataka, India

Abstract: Mineral admixtures play a crucial role in enhancing concrete performance and promoting sustainability. This review provides a comprehensive overview of the properties, performance, and applications of key mineral admixtures, including fly ash, rice husk ash, ground granulated blast-furnace slag, silica fume, and metakaolin. The study examines how these materials improve concrete's strength, durability, and workability, while also addressing environmental impacts. The pozzolanic reactions and microstructural benefits associated with these admixtures are discussed, alongside their diverse applications in high-strength, durable, self-compacting, and sustainable concrete. The review emphasizes the need for ongoing research to optimize admixture use, focusing on advanced characterization, novel combinations, and the integration of fibers and AI-driven optimization. Future research should prioritize sustainable practices, including circular economy principles and carbon sequestration, to ensure the long-term viability of mineral admixture concrete in creating resilient and environmentally responsible infrastructure.

Keywords: Mineral admixtures, concrete, fly ash, silica fume, GGBS, metakaolin, durability, strength, sustainability, pozzolanic reaction.

I. Introduction

Concrete, as the most widely used construction material globally, faces increasing demands for enhanced performance and reduced environmental impact. Traditional Portland cement production is energy-intensive and contributes significantly to greenhouse gas emissions. In response, the incorporation of mineral admixtures into concrete has emerged as a pivotal strategy to improve its properties, enhance sustainability, and address the challenges of resource depletion. Mineral admixtures, including industrial by-products and naturally occurring pozzolanic materials, offer a multifaceted approach to optimizing concrete performance, ranging from improved workability and strength to enhanced durability and reduced carbon footprint.

The utilization of mineral admixtures is not a recent innovation. Seminal works by Malhotra and Mehta (1996) [1], [2] highlighted the potential of high-volume fly ash and rice husk ash in achieving high-performance concrete, establishing the foundation for subsequent research. These studies demonstrated the benefits of partially replacing Portland cement with these materials, leading to improved long-term properties. Further investigations into the properties of concrete incorporating fly ash and ground granulated blast-furnace slag (GGBS) by Li and Zhao (2003) [3] solidified the understanding of synergistic effects between different admixtures. Research into the impact of fly ash fineness on concrete properties by Chindaprasirt et al. (2005)

[4] and the exploration of self-compacting concrete incorporating high volumes of fly ash by Bouzoubaa and Lachemi (2001) [5] further broadened the scope of fly ash applications.

The practical aspects of optimizing fly ash usage were comprehensively addressed by Thomas (2007) [6], providing guidelines for the industry. Beyond fly ash, the use of other mineral admixtures like metakaolin, silica fume, and recycled concrete powder has been extensively studied. Khatib (2008) [7] explored the benefits of metakaolin concrete at low water-binder ratios, while Siddique (2011) [8] reviewed the hardened properties of silica fume concrete. The reactivity of metakaolin and the rate of pozzolanic reactions in blended cement pastes were investigated by Escalante-Garcia et al. (2003) [10] and Poon et al. (2002) [9], respectively.

Recent comprehensive reviews by Rashad (2013) [11], Lothenbach et al. (2011) [12], and Juenger et al. (2011) [13] have provided critical insights into the influence of fly ash, supplementary cementitious materials, and alternative cementitious binders. The pressing need for eco-efficient solutions has been emphasized by Scrivener et al. (2018) [14], highlighting the role of mineral admixtures in achieving a low-CO₂ intensive industry. Finally, the critical review of metakaolin-blended cement concretes by Miller et al. (2018) [15] provides a deep dive into that specific admixture.

This review aims to synthesize the accumulated knowledge on mineral admixtures, providing a comprehensive overview of their properties, performance, and applications in concrete. By consolidating findings from these key studies, this paper seeks to offer a valuable resource for researchers, engineers, and practitioners seeking to optimize the use of mineral admixtures in concrete construction.

II. Mineral Admixtures and Their Properties

2.1 Types and Sources of Mineral Admixtures

Mineral admixtures are finely divided materials that can be added to concrete mixes to modify or enhance their properties. They are broadly classified as pozzolanic or cementitious materials, depending on their chemical composition and reactivity. This section explores the properties and sources of availability of key mineral admixtures used in concrete.

- **Fly Ash:**

- **Properties:** A byproduct of coal combustion in thermal power plants, exhibiting pozzolanic properties due to its high silica and alumina content. It improves workability, reduces permeability, and enhances long-term strength. The fineness of fly ash significantly influences its reactivity and performance (Chindaprasirt et al., 2005) [4]. High-volume fly ash concrete demonstrates excellent durability (Malhotra and Mehta, 1996) [1], and can be used in self compacting concrete (Bouzoubaa and Lachemi, 2001) [5]. Optimized use of Fly Ash improves concrete properties (Rashad, 2013) [11], (Thomas, 2007) [6].
- **Source of Availability:** Coal-fired power plants.

2.2 Rice Husk Ash (RHA):

- **Properties:** Obtained by burning rice husks, a highly pozzolanic material with a high silica content. It contributes to high-performance concrete by enhancing strength and durability (Zhang and Malhotra, 1996) [2].
- **Source of Availability:** Rice mills and agricultural waste processing facilities.

2.3 Ground Granulated Blast-Furnace Slag (GGBS):

- **Properties:** A byproduct of iron manufacturing, a latent hydraulic material that reacts with calcium hydroxide in concrete. It improves strength, reduces permeability, and enhances resistance to sulfate attack. GGBS works well in combination with fly ash (Li and Zhao, 2003) [3].
- **Source of Availability:** Steel manufacturing plants.

2.4 Silica Fume:

- **Properties:** A byproduct of silicon and ferrosilicon alloy production, an extremely fine pozzolanic material with a very high silica content. It significantly enhances strength and reduces permeability (Siddique, 2011) [8].
- **Source of Availability:** Silicon and ferrosilicon alloy industries.

2.5 Metakaolin:

- **Properties:** Produced by calcining kaolin clay, a highly reactive pozzolanic material. It improves strength, reduces permeability, and enhances resistance to chemical attack. Metakaolin works well in low water to binder ratios (Khatib, 2008) [7], and its reactivity has been studied extensively (Escalante-Garcia et al., 2003) [10]. Performance of Metakaolin blended concrete is well documented (Miller et al. 2018) [15].
- **Source of Availability:** Processed kaolin clay.

2.6 Recycled Concrete Powder:

- **Properties:** Obtained from crushing and grinding waste concrete, can exhibit pozzolanic activity. The rate of pozzolanic reaction of recycled concrete powder blended cement pastes are well documented (Poon et al. 2002) [9].
- **Source of Availability:** Construction and demolition waste recycling facilities.

2.7 Supplementary Cementitious Materials (SCMs):

- **Properties:** SCMs encompasses many of the above materials. SCMs contribute to the long term properties of concrete (Lothenbach et al. 2011) [12]. Advances in SCM's is an ongoing field of research (Juenger et al. 2011) [13]. The use of SCM's helps to create a more Eco-Efficient cement industry (Scrivener et al. 2018) [14].
- **Source of Availability:** Various industrial byproducts and processed natural materials.

III. Performance of Mineral Admixture Concrete

The incorporation of mineral admixtures significantly influences the performance of concrete, impacting its strength, durability, and overall behavior. This section discusses the key performance aspects of mineral admixture concrete, drawing from the provided references.

3.1 Strength Development:

- Mineral admixtures contribute to strength development through pozzolanic reactions, which produce additional calcium silicate hydrate (C-S-H) gel, the primary binding phase in concrete.
- High-volume fly ash concrete exhibits excellent long-term strength development (Malhotra and Mehta, 1996) [1].
- Rice husk ash (RHA) also enhances strength, contributing to high-performance concrete (Zhang and Malhotra, 1996) [2].
- The combination of fly ash and ground granulated blast-furnace slag (GGBS) results in improved strength characteristics (Li and Zhao, 2003) [3].
- The fineness of fly ash plays a crucial role in strength development, with finer fly ash leading to higher compressive strength (Chindaprasirt et al., 2005) [4].
- Silica fume significantly enhances the strength of concrete due to its high pozzolanic activity (Siddique, 2011) [8].
- Metakaolin concrete, especially at low water-binder ratios, demonstrates high strength potential (Khatib, 2008) [7].

3.2 Durability:

- Mineral admixtures improve the durability of concrete by reducing permeability and enhancing resistance to chemical attack.
- Fly ash reduces permeability, thereby improving resistance to chloride and sulfate attack (Malhotra and Mehta, 1996) [1].
- GGBS also contributes to reduced permeability and improved resistance to sulfate attack (Li and Zhao, 2003) [3].
- Silica fume significantly reduces permeability, enhancing resistance to chloride penetration (Siddique, 2011) [8].
- Supplementary Cementitious materials in general, help with long term concrete durability (Lothenbach et al. 2011) [12].

3.3 Workability and Rheology:

- Fly ash improves the workability of concrete due to its spherical particle shape (Rashad, 2013) [11], (Thomas, 2007) [6].
- High-volume fly ash concrete can be used to produce self-compacting concrete (Bouzoubaa and Lachemi, 2001) [5].

3.4 Microstructural Characteristics:

- Mineral admixtures contribute to a denser and more refined microstructure, resulting in improved performance.
- The pozzolanic reaction of metakaolin leads to the formation of a denser microstructure (Escalante-Garcia et al., 2003) [10], (Miller et al. 2018) [15].
- The rate of pozzolanic reaction in recycled concrete powder blended cement pastes effects the microstructure (Poon et al. 2002) [9].
- Advances in alternative cementitious binders, including mineral admixtures, are continually improving the microstructural characteristics of concrete (Juenger et al., 2011) [13].

3.5 Environmental Impact:

- The use of mineral admixtures contributes to a more sustainable concrete industry by reducing the demand for Portland cement.
- Eco-efficient cements, incorporating mineral admixtures, offer a viable solution for a low-CO₂ intensive industry (Scrivener et al., 2018) [14].

3.6 Summary of Mineral Admixture Performance

3.6.1 Comparative Analysis and Benefits Overview

Table 1 provides a concise comparative analysis of the performance characteristics of various mineral admixtures in concrete. The data reveals that each admixture offers unique benefits, contributing to enhanced strength, durability, and sustainability.

Table 1: Performance of Mineral Admixture Concrete

Mineral Admixture	Strength Development	Durability	Workability/Rheology	Microstructural Characteristics	Environmental Impact	Key References
Fly Ash	Improved long-term strength	Reduced permeability, enhanced resistance to chloride and sulfate attack	Improved workability, used in self-compacting concrete	Denser microstructure	Reduced CO ₂ emissions	[1], [4], [5], [6], [11]
Rice Husk Ash (RHA)	Enhanced strength	Improved durability	-	-	Reduced CO ₂ emissions	[2]
GGBS	Improved strength	Reduced permeability, enhanced resistance to sulfate attack	-	-	Reduced CO ₂ emissions	[3]
Silica Fume	Significantly enhanced strength	Significantly reduced permeability, enhanced resistance to chloride penetration	-	-	Reduced CO ₂ emissions	[8]
Metakaolin	High strength potential at low w/b ratios	Reduced permeability, enhanced resistance to chemical attack	-	Denser microstructure	Reduced CO ₂ emissions	[7], [10], [15]
Recycled Concrete Powder	Contributes to strength through pozzolanic activity	-	-	Impacted by pozzolanic reaction rate	Reduced waste, potential CO ₂ reduction	[9]

SCMs (General)	Contributes to long term strength	Improves long term durability	-	Continual improvement	Helps to create a more Eco-Efficient cement industry.	[12],[13],[14]
-------------------	-----------------------------------	-------------------------------	---	-----------------------	---	----------------

Notes:

- w/b = water-binder ratio
- "-" indicates that the specific aspect was not the primary focus of the cited research, though it doesn't mean the admixture has no effect.
- The table is based on the information provided in the given references. Further research may provide more detailed information.
- "Reduced CO₂ emissions" is a general statement. The specific reduction depends on the replacement percentage and the type of admixture.

The table illustrates that the selection of a particular mineral admixture is often driven by the desired performance characteristics of the concrete.

- **Strength Enhancement:** Fly ash, RHA, GGBS, silica fume, and metakaolin all contribute to improved strength development, with silica fume exhibiting the most significant enhancement.
- **Durability Improvement:** All listed admixtures improve durability by reducing permeability and enhancing resistance to chemical attack, with silica fume and metakaolin showing particularly strong performance in this area.
- **Workability and Rheology:** Fly ash is notable for improving workability and enabling the production of self-compacting concrete.
- **Microstructural Refinement:** Mineral admixtures contribute to a denser and more refined microstructure, leading to improved performance. Metakaolin and the general class of SCMs are highlighted as particularly impactful.
- **Environmental Sustainability:** The use of all these mineral admixtures contributes to a more sustainable concrete industry by reducing the demand for Portland cement and utilizing industrial by-products. This leads to reduced CO₂ emissions and waste reduction.

In essence, Table 1 demonstrates that the selection of mineral admixture should be tailored to the specific performance requirements of the concrete application. The combined use of these materials can lead to synergistic effects, further enhancing concrete properties and sustainability.

IV. Applications of Mineral Admixture Concrete

The enhanced properties imparted by mineral admixtures make them suitable for a wide range of concrete applications, addressing diverse engineering and environmental requirements. This section explores the common applications of mineral admixture concrete, drawing from the provided references.

4.1 High-Strength Concrete:

- Mineral admixtures like silica fume and metakaolin are extensively used in high-strength concrete applications, such as tall buildings and bridges, due to their significant contribution to strength development (Siddique, 2011) [8], (Khatib, 2008) [7].
- High-volume fly ash concrete also contributes to high strength applications (Malhotra and Mehta, 1996) [1].

4.2 Durable Concrete:

- Concrete structures exposed to harsh environments, such as marine structures and infrastructure, benefit from the enhanced durability provided by mineral admixtures.
- Fly ash, GGBS, and silica fume are utilized to reduce permeability and enhance resistance to chloride and sulfate attack, ensuring long-term performance (Malhotra and Mehta, 1996) [1], (Li and Zhao, 2003) [3], (Siddique, 2011) [8].

4.3 Self-Compacting Concrete (SCC):

- Fly ash is particularly suitable for producing self-compacting concrete, which is used in complex formworks and congested reinforcement scenarios (Bouzoubaa and Lachemi, 2001) [5].
- The improved workability provided by fly ash facilitates the flowability and compaction of SCC.

4.4 Sustainable Concrete:

- The use of mineral admixtures contributes to a more sustainable concrete industry by reducing the demand for Portland cement and utilizing industrial by-products.
- Eco-efficient cements incorporating mineral admixtures are used in environmentally friendly construction projects (Scrivener et al., 2018) [14].
- Recycled concrete powder is used to reduce waste (Poon et al. 2002) [9].

4.5 Specialized Applications:

- Rice husk ash (RHA) is used in specific applications where high-performance concrete is required (Zhang and Malhotra, 1996) [2].
- Metakaolin is used in applications requiring high resistance to chemical attack (Miller et al. 2018) [15].

4.6 Summary of Mineral Admixture Concrete Applications

4.6.1 Optimal Admixture Selection for Specific Applications

Table 2 highlights the diverse applications of mineral admixture concrete, demonstrating the versatility and adaptability of these materials to meet specific construction needs.

Table 2: Applications of Mineral Admixture Concrete

Mineral Admixture	Typical Applications	Key Benefits	Key References
Fly Ash	High-strength concrete, durable concrete, self-compacting concrete, sustainable concrete	Improved strength, enhanced durability, improved workability, reduced environmental impact	[1], [5], [6], [11]
Rice Husk Ash (RHA)	High-performance concrete	Enhanced strength, improved durability	[2]
GGBS	Durable concrete	Enhanced durability, resistance to sulfate attack	[3]
Silica Fume	High-strength concrete, durable concrete	Significantly enhanced strength, significantly reduced permeability	[8]
Metakaolin	High-strength concrete, applications requiring high chemical resistance	High strength potential, enhanced resistance to chemical attack	[7], [15]
Recycled Concrete Powder	Sustainable concrete	Reduced waste, potential CO ₂ reduction	[9]
SCMs (General)	Sustainable concrete, long term durability applications	Improved long term durability, reduction of CO ₂ emission.	[12],[13],[14]

The table illustrates that the selection of a particular mineral admixture is often driven by the desired performance characteristics and the intended application.

- **Targeted Performance:** The table effectively shows how different mineral admixtures are chosen to achieve specific performance goals. For high-strength applications, silica fume and metakaolin are

preferred, while for durability in aggressive environments, fly ash, GGBS, and silica fume are commonly used.

- **Sustainability Focus:** The table emphasizes the role of mineral admixtures in promoting sustainable construction practices. The inclusion of recycled concrete powder and the focus on SCMs highlight the industry's commitment to reducing waste and minimizing the environmental footprint of concrete.
- **Application-Specific Benefits:** Each mineral admixture offers unique benefits that make it suitable for particular applications. Fly ash's contribution to workability makes it ideal for self-compacting concrete, while the enhanced chemical resistance of metakaolin makes it valuable in specialized projects.
- **Optimizing Concrete Design:** Table 2 serves as a valuable guide for engineers and designers seeking to optimize concrete mixes for specific applications. By understanding the properties and benefits of each mineral admixture, they can select the most appropriate materials to achieve the desired performance, durability, and sustainability goals.

In essence, Table 2 underscores the importance of considering the application requirements when selecting mineral admixtures, ensuring that concrete structures are not only strong and durable but also environmentally responsible.

V. Future Research Directions

The extensive use of mineral admixtures in concrete has yielded significant advancements in material performance and sustainability. However, several areas warrant further investigation to optimize their application and explore new possibilities.

- **Synergistic Effects of Fibers and Mineral Admixtures:** Investigating the combined benefits of various fiber types (steel, synthetic, natural) with mineral admixtures to significantly enhance mechanical properties, crack control, and durability, especially for specialized applications like seismic resistance and 3D printing.
- **Advanced Microstructural Characterization:** Employing techniques like X-ray computed tomography (XCT) and nanoindentation to gain a deeper understanding of the interactions between mineral admixtures, fibers, and the cementitious matrix, leading to optimized mix designs.
- **Sustainable and Circular Economy Practices:** Focusing on the development of concrete with reduced environmental impact through the exploration of novel, locally sourced SCMs, recycled fibers, and the enhancement of carbon sequestration potential.
- **AI and Machine Learning for Optimized Mix Design and Performance Prediction:** Utilizing artificial intelligence and machine learning to optimize the complex interactions between mineral admixtures, fibers, and other mix components, and to accurately predict the long-term performance and durability of resulting concrete.

VI. Conclusion

This comprehensive review has highlighted the significant role of mineral admixtures in enhancing the properties, performance, and sustainability of concrete. Byproducts like fly ash, rice husk ash, ground granulated blast-furnace slag (GGBS), silica fume, and metakaolin, as well as supplementary cementitious materials (SCMs) in general, have been shown to offer substantial improvements in strength, durability, and workability. The judicious use of these materials not only optimizes concrete performance but also contributes to a more environmentally responsible construction industry by reducing the demand for Portland cement and utilizing industrial waste streams.

The reviewed studies demonstrate the versatility of mineral admixtures across a broad spectrum of applications, from high-strength structures and durable infrastructure to self-compacting concrete and sustainable construction projects. The selection of specific admixtures is contingent upon the desired performance characteristics, highlighting the need for a thorough understanding of their individual properties and synergistic effects.

However, ongoing research is crucial to fully unlock the potential of mineral admixtures. Future investigations should focus on advanced characterization techniques to elucidate microstructural interactions, explore novel admixture combinations, and assess long-term performance under diverse environmental conditions. The

integration of fibers with mineral admixtures, and the application of artificial intelligence and machine learning for mix design optimization, present promising avenues for further advancement. Furthermore, the pursuit of sustainable practices, including the use of recycled materials and the enhancement of carbon sequestration, remains a paramount goal.

In conclusion, mineral admixtures are indispensable components of modern concrete technology, enabling the development of high-performance, durable, and sustainable structures. Continued research and innovation in this field will undoubtedly lead to further advancements, ensuring that concrete remains a vital and environmentally conscious material for the future of construction.

References

- [1] Malhotra, V.M., and Mehta, P.K. 1996. High-Performance, High-Volume Fly Ash Concrete. *ACI Materials Journal*, 93(5): 416-426.
- [2] Zhang, M.H., and Malhotra, V.M. 1996. High-Performance Concrete Incorporating Rice Husk Ash as a Supplementary Cementing Material. *ACI Materials Journal*, 93(6): 629-636.
- [3] Li, G., and Zhao, X. 2003. Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast-Furnace Slag. *Cement and Concrete Composites*, 25(3): 293-299.
- [4] Chindaprasirt, P., Jaturapitakkul, C., and Sinsiri, T. 2005. Effect of Fly Ash Fineness on Compressive Strength and Pore Size of Blended Cement Paste. *Cement and Concrete Composites*, 27(4): 425-428.
- [5] Bouzoubaa, N., and Lachemi, M. 2001. Self-Compacting Concrete Incorporating High Volumes of Class F Fly Ash: Preliminary Results. *Cement and Concrete Research*, 31(3): 413-420.
- [6] Thomas, M.D.A. 2007. Optimizing the Use of Fly Ash in Concrete. *Portland Cement Association*, Skokie, Illinois, USA.
- [7] Khatib, J.M. 2008. Metakaolin Concrete at a Low Water to Binder Ratio. *Construction and Building Materials*, 22(8): 1691-1700.
- [8] Siddique, R. 2011. Utilization of Silica Fume in Concrete: Review of Hardened Properties. *Resources, Conservation and Recycling*, 55(11): 923-932.
- [9] Poon, C.S., Lam, L., Kou, S.C., Wong, Y.L., and Wong, R. 2002. Rate of Pozzolanic Reaction of Recycled Concrete Powder Blended Cement Pastes. *Journal of Materials in Civil Engineering*, 14(5).
- [10] Escalante-Garcia, J.I., Sharp, J.H., and Rodriguez-Camacho, R.E. 2003. Reactivity of Metakaolin in Portland Cement Blends. *Cement and Concrete Research*, 33(8).
- [11] Rashad, A.M. 2013. A Comprehensive Overview of the Influence of Fly Ash as Partial Cement Replacement on the Properties of Concrete. *Journal of Cleaner Production*, 53.
- [12] Lothenbach, B., Scrivener, K.L., and Hooton, R.D. 2011. Supplementary Cementitious Materials. *Cement and Concrete Research*, 41(12).
- [13] Juenger, M.C., Winnefeld, F., Provis, J.L., and Ideker, J.H. 2011. Advances in Alternative Cementitious Binders. *Cement and Concrete Research*, 41(12).
- [14] Scrivener, K.L., John, V.M., and Gartner, E.M. 2018. Eco-Efficient Cements: Potential, Economically Viable Solutions for a Low-CO₂ Intensive Industry. *Cement and Concrete Research*, 114.
- [15] Miller, S.A., John, V.M., and Pacovsky, A. 2018. Performance of Metakaolin-Blended Cement Concretes: A Critical Review. *Cement and Concrete Composites*, 91.