
www.ijcrt.org                                                      © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882 

IJCRT22A6372 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d50 
 

DEEP LEARNING ALGORITHM BASED 

HYPERSPECTRAL IMAGE 

CLASSIFICATION 

 

 1C.Gomathi,  2 P.J.Mercy MCA.,M.Phil. 

ABSTRACT 

The traditional unsupervised loss function [e.g., mean square error (MSE)] calculates the distance between 

the predicted value and the original input. However, it is difficult to guarantee the effectiveness of the 

features only by optimizing the reconstruction error. In order to make the learned features more effective 

for classification tasks, we optimize the contrastive loss function to make the features from different views 

of the same sample consistent. This makes the features of the same class aggregate with each other, and 

the features of different classes are far away from each other. Therefore, the features obtained by 

optimizing the contrastive loss function of different views could effectively improve the classification 

accuracy. We use a deep CNN as the base feature extractor. We call this proposed method deep multiview 

learning.  

INTRODUCTION 

Hyperspectral image classification is the task of classifying a class label to every pixel in an image that 

was captured using (hyper)spectral sensors. Image result for hyperspectral image classification 

Hyperspectral imaging, like other spectral imaging, collects and processes information from across the 

electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in 

the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes. 

Hyperspectral image (HSI) classification is a phenomenal mechanism to analyze diversified land cover in 

remotely sensed hyperspectral images. 

The technological progression in optical sensors over the last few decades provides enormous amount of 

information in terms of attaining requisite spatial, spectral and temporal resolutions. Especially, the 

generous spectral information comprises of hyperspectral images (HSIs) establishes new application 

domains and poses new technological challenges in data analysis [1]. With the available high spectral 
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resolution, subtle objects and materials can be extracted by hyperspectral imaging sensors with very 

narrow diagnostic spectral bands for the variety of purposes such as detection, urban planning [2], 

agriculture [3], identification, surveillance [4], and quantification [5, 6]. HSIs allow the characterization of 

objects of interest (e.g., land cover classes) with unprecedented accuracy, and keep inventories up to date. 

Improvements in spectral resolution have called for advances in signal processing and exploitation 

algorithms. 

Hyperspectral image is a 3D data cube, which contains two-dimensional spatial information (image 

feature) and one-dimensional spectral information (spectral-bands). Especially, the spectral bands occupy 

very fine wavelengths, while the image features such as Land cover features and shape features disclose 

the disparity and association among adjacent pixels from different directions at a confident wavelength. 

 

LITERATURE SURVEY 

In [1], the authors have described the fundamental hurdles of HSI classification that classical machine 

learning approaches cannot effectively address, as well as the benefits of using deep learning to address 

these issues. Then, to systematically examine recent achievements in deep learning-based HSI 

classification, we construct a framework that classifies corresponding works into spectral-feature 

networks, spatial-feature networks, and spectral-spatial-feature networks. Furthermore, because available 

training data in the remote sensing sector are typically scarce, and deep network training necessitates a 

high number of samples, we present several ways for improving classification performance, which might 

serve as guidance for future research on this subject. 

To improve the small sample classification performance of hyperspectral images, a simple but creative 

classification paradigm based on the morphological attribute profile cube is proposed in [2]. To begin, 

multiple morphological filters are applied to the hyperspectral image to create morphological attribute 

profiles. After that, sample features such as morphological attribute profile cubes are extracted. Second, to 

make full use of the rich spatial-spectral information, the resulting morphological attribute profile cubes 

are scanned with various scale sliding windows. To finish the classification task, the features from the 

multi-grained scanning are fed into a deep forest classifier. In this way, the suggested method might 

improve classification accuracy by utilising a deep network topology.  

In [3], the authors have examined the strengths and shortcomings of the most extensively used classifiers 

in the literature to provide a comprehensive overview of the present state-of-the-art in DL for HSI 

classification. The authors have present quantifiable findings for each mentioned method using many 

well-known and extensively utilised HSI scenarios, allowing for a thorough comparison of the 

methodologies. The research ends with some observations and suggestions for future problems in using 

DL approaches to HSI classification. 
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In [4], that research suggested a multi-scale dense network (MSDN) for HSI classification that fully 

utilised varied scale information in the network topology and aggregated scale information across the 

network. It extracted HSI features in two dimensions, including fine and coarse features. The deep 

extraction of HSI features was evaluated in the horizontal direction, and the 3-D dense connection 

structure was employed to aggregate features at different levels. Scale information was examined in the 

vertical direction, and three-scale feature maps at low, middle, and high levels were constructed using the 

first layer of the network. For downsampling, the MSDN employed stride convolution and incorporated 

feature information at various scale levels. Along the diagonal line, the MSDN extracted characteristics. 

For HSI classification, the network used deep feature extraction reconstruction and multi-scale fusion. On 

sample HSI datasets, including as the Indian Pines, Pavia University, Salinas, Botswana, and Kennedy 

Space Center datasets, the MSDN model performed well. It increased the HSI classification training speed 

and accuracy, as well as the convergence speed, which successfully conserved computer resources and 

had excellent stability. 

In [5], the authors have built on our earlier work by applying the maximum correntropy criterion to the 

noise and outliers problem, resulting in a more resilient and better generalisation model. As a result, even 

if some samples are slightly distorted, discriminative characteristics can be extracted. A novel dual-

channel architecture based on robust CapsNet is also developed for fusing hyperspectral data with light 

detection and ranging-derived elevation data for classification.  

In [6], the authors have examined unsupervised feature extraction on hyperspectral imagery (HSI) and 

suggest a unique approach for extracting spectral-spatial features from HSI using autoencoder (AE) 

networks. Our technique considers data relations, such as input dependency with nearby inputs, which is 

commonly overlooked by traditional AE-based feature extractors. The loss function of the normal AE is 

changed in such a way that pixels share common features with nearby pixels. The procedure allows for the 

creation of smooth compressed images that are represented by the AE's features. For land cover 

classification, numerical experiments were done using real-world HSI data sets. The findings showed that 

spectral-spatial characteristics recovered using our method are more discriminative for land cover 

classification than those extracted using traditional methods. 

Using a 3-Dimensional (3D) convolutional autoencoder, an unsupervised spatial-spectral feature learning 

technique for hyperspectral pictures is proposed in [7] (3D-CAE). To maximise the exploration of spatial-

spectral structural information for feature extraction, the proposed 3D-CAE uses only 3D or elementwise 

operations, such as 3D convolution, 3D pooling, and 3D batch normalisation. A 3D convolutional decoder 

network is also being developed to reconstruct the input patterns to the proposed 3D-CAE, allowing all of 

the network's parameters to be taught without using labelled training samples. As a result, effective 

features can be trained in an unsupervised mode, without the need for pixel label information.  
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In [8], the proposed generator and discriminator are built on a fully deconvolutional subnetwork and a 

fully convolutional subnetwork, respectively, to learn upsampling and downsampling techniques 

adaptively during FE. Furthermore, by exploiting the zero-sum game relationship between the generator 

and discriminator, an unique min-max cost function is created for training the proposed GAN in an end-to-

end fashion without supervision. In addition, the suggested modified GAN substitutes the original Jensen-

Shannon divergence with the Wasserstein distance, intending to reduce the instability and difficulty of 

GAN framework training. The proposed method's usefulness is confirmed by findings from three real-

world data sets. 

 

In [9], the authors have allowed for the rapid construction of a large, consistent vocabulary, which aids 

contrastive unsupervised learning. MoCo's ImageNet classification scores are competitive when using the 

typical linear procedure. More crucially, MoCo's representations are well-suited to subsequent activities. 

On PASCAL VOC, COCO, and other datasets, MoCo can outperform its supervised pre-training 

equivalent in seven detection/segmentation tasks, sometimes by a wide margin. This shows that in many 

visual tasks, the gap between unsupervised and supervised representation learning has narrowed. 

The short sample size challenge of HSI classification is addressed in this research by proposing a deep 

few-shot learning algorithm in [10]. The suggested method includes three innovative tactics. A deep 

residual 3-D convolutional neural network is used to extract spectral–spatial information to reduce 

labelling uncertainty. Second, episodes educate the network to learn a metric space in which samples from 

the same class are close together and samples from other classes are separated. Finally, in the learned 

metric space, the testing samples are classified by a closest neighbour classifier.  

PROPOSED METHODOLOGY 

The paramount challenge for HSI classification is the curse of dimensionality which is also termed as 

Hughes phenomenon. To confront with this difficulty, feature extraction methods are used to reduce the 

dimensionality by selecting the prominent features. In unsupervised methods, the algorithm or method 

automatically groups pixels with similar spectral characteristics (means, standard deviations, etc.) into 

unique clusters according to some statistically determined criteria. Further, unsupervised classification 

methods do not require any prior knowledge to train the data. The familiar unsupervised methods are 

principal component analysis (PCA) and independent component analysis (ICA). 

A. Principal component analysis 

It is the most widely used technique for dimensionality reduction. In comparative sense, appreciable reduction in the 

number of variables is possible while retaining most of the information contained by the original dataset. The 

substantial correlation between the hyperspectral bands is the basis for PCA. The analysis attempts to eliminate the 

correlation between the bands and further determines the optimum linear combination of the original bands 

accounting for the variation of pixel values in an image . 
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The mathematical principle of PCA relies upon the eigen value decomposition of covariance matrix of HSI bands. 

The pixels of hyperspectral data are arranged as a vector having its size same as the number of 

bands. X i = x 1 x 2 . . … x N T , where N is the number of HS bands. The mean of all the pixel vectors is 

calculated as: 

m = 1 M ∑ i = 1 M x 1 x 2 … x N i T 

 

where M = p ⋆ q is the number of pixel vectors for a HS image of “p” rows and “q” columns. The 

covariance matrix is determined as: 

C = 1 M ∑ i = 1 M X i − m X i − m T  

The covariance matrix can also be written as: 

C = ADA T  

D is the diagonal matrix composed of eigen values λ 1 . … λ N of C and A is the orthogonal matrix with 

the corresponding eigen vectors (each of size N) as columns. The linear 

transformation y i = A T X i , i = 1 , 2 . … M , is adapted to achieve the modified pixel vectors which are 

the PCA transformed bands of original images. The first K rows of the matrix A T are selected such that, 

the rows are the eigen vectors corresponding to the eigen values arranged in a descending order. The 

selected K rows are multiplied with the pixel vector X i to yield the PCA bands composed of most of the 

information contained in the HS bands. 

In  hypespectral data, most of the elements are covered by the sensors with high spectral resolution which 

cannot be well described by the second order characteristics. Hence, PCA is not an effective tool for HS 

image classification since it deals with only second-order statistics. 

DEEP MULTIVIEW LEARNING FOR HSI CLASSIFICATION 

 

Fig. 1. Pipeline of the deep multiview learning for HIS 
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Fig. 2. Illustration of a standard residual block. CONV2D denotes a convolutional layer, BatchNorm 

denotes a batch normalization layer, and ReLU denotes a ReLU layer.high-level feature vector. A 

multilayer perceptron with two fully connected layers g(·) is used to transform the latent features h(i) 1 

and h(i) 2 into z (i) 1 and z (i) 2 . Then, we define the contrastive loss on z (i) 1 and z (i) 2 rather than h(i) 

1 and h(i) 2 . In the training procedure, a minibatch of N samples is randomly selected as the training 

samples of one parameter update. The contrastive prediction task is defined on pairs of samples derived 

from the minibatch, resulting in 2N views. In 2N views, two views from the same sample are taken as a 

positive pair, and two views from different samples are taken as negative pairs. The contrastive loss is 

defined denotes the cosine similarity between two vectors zi and z j . In a minibatch, the total loss is 

computed across all positive pairs. Our goal is to learn representations that capture information shared 

between multiple sensory views without human supervision. This loss is defined according to the 

similarity between views, which means that it does not need any human supervision information. In other 

words, it is an unsupervised method. More importantly, this loss ensures that the network learns to extract 

view-invariant features, which is a useful representation of the samples. When the number of views is 

more than 3, the features of different views are combined in pairs. The contrastive loss is calculated 

respectively for the features of two combined views. Then, the sum of the contrastive loss calculated from 

different combined views is calculated as the final loss function. 

B. Deep Residual Network  

The f (·) that extracts representation vectors from views could be various network architecture. 

Recent studies [41], [42] reveal that the classification performance benefits from bigger models. Residual 

learning has become a common method to improve the accuracy in natural image recognition and HSI 

classification [43], [44]. Therefore, a variant of Resnet50 [41] is used as the network that extracts 

representation vectors from views. Deep residual learning could make training deep network easier. Thus, 

it has been widely used in a variety of classification tasks. As shown in Fig. 2, the core idea of deep 

residual learning is to introduce a shortcut connection, which directly skips one or more layers. The deep 

residual network is based on residual block. As shown in Fig. 2, there are three convolutional layers in a 

standard residual block. Each convolution layer is followed by a batch normalization layer (BatchNorm) 

and a ReLU layer. The original input is then added with the output of the last convolutional layer as the 

output of a residual block, which is a shortcut operation. The output of a residual block is activated by a 

ReLU layer as the input of the later residual block. Note that the dimension of the input data may be 

different from the output dimension of the last convolutional layer of the residual block. When the 

dimension of the input and the last convolutional layer of the residual block is different, a 1 × 1 
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convolutional layer followed by a batch normalization layer is applied to the input to conduct a resample 

operation in order to ensure consistent data dimensions. The original Resnet50 consists of one 

convolutional layer, 16 residual blocks, two pooling layers, and one classification 

                                                     TABLE I 

DETAILS OF DEEP RESIDUAL NETWORK USED AS THE BASE FEATURE EXTRACTOR 

 Stage 1 MaxPool Stage 2 Stage 3 Stage 4 Stage 5 AvgPool 

Parameters 3*3,64 2*2 

Max 

pooling 

1*1,64 

3*3,64     * 3 

1*1,256 

1*1,128 

3*3,128   *4 

1*1,512 

1*1,256 

3*3,256   *6 

1*1,102 

1*1,512 

3*3,512    *3 

1*1,2048 

Global 

average 

pooling 

 

Algorithm 1 Minibatch Training Procedure  

Require: Batch size N, deep residual network f (·), fully connected network g(·), data augmentation 

operation τ 

         for sampled minibatch {x}N i=1 do 

 for i in {1,..., N} do 

 Draw two augmentation operations τ1 ∼ τ , τ2 ∼ τ 

 # The first view 

 x2k−1 = τ1(x(i) 1 )  

h2k−1 = f (x2k−1)  

z2k−1 = g(h2k−1))  

# The second view 

 x2k = τ1(x(i) 2 )  

h2k = f (x2k)  

z2k = g(h2k))  

end for  

for i in {1,..., 2N}, j in {1,..., 2N} do  

si,j = z i z j ||zi || ||z j ||  

end for  
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calculate the loss ζi,j = − log exp(si,j) 2N k=1 l[k=i] exp(si,k ) 

 calculate the total loss ζ = 1 2N ∑2N i=1  ζ2i−1,2i + ζ2i,2i−1   

update networks f (·) and g(·) to minimize ζ  

end for 

layer (fully connected layer). The purpose of the training network is not to classify but to learn the 

representations of views. Therefore, the Resnet50 without classification layer is used as the base feature 

extractor f (·). As shown in Fig. 3, the Resnet50 f (·) actually consists of 49 convolutional layers, 1 + 3 × 

(3 + 4 + 6 + 3) = 49. The details of the deep residual network used as the base feature extractor f (·) are 

shown in Table I. Note that the output of the deep residual network is a 2048 vector. Subsequently, a 

multilayer perceptron with two fully connected layers g(·) is applied to the output vector of the Resnet50 f 

(·) to reduce the dimensions of output features. In fact, the network used to extract features includes 49 

convolutional layers and two fully connected layers.  

C. Training and Testing Procedure  

The contrastive loss is defined on the outputs of the multilayer perceptron. More specifically, the 

pseudocode for a training minibatch procedure is given in Algorithm 1. Data augmentation is a common 

technique that can effectively improve the generalization ability of a model and has been widely used in 

supervised deep learning. However, data augmentation has not been used in the contrastive prediction 

task. Consequently, two data augmentations (random cropping and random Gaussian blur) are used to 

improve the robustness of network training. In the testing procedure, the deep residual network trained on 

a specific HSI is used as a feature extractor. Then, all samples of this specific HSI pass through the deep 

residual network to output the corresponding feature vectors. So far, conventional machine learning 

methods could be applied to the extracted features to complete the classification task. Here, an SVM 

classifier and an RF classifier are used.  

EXPERIMENTAL RESULTS AND ANALYSIS  

The proposed method is implemented by the PyTorch library. The results are generated on a PC equipped 

with an Intel Core i7-9750H with 2.6 GHz and an Nvidia GeForce RTX 2070M. The PC’s memory is 

16G. 

A. Data Sets  

To demonstrate the effectiveness of the proposed method, the University of Pavia data set, the Indiana 

Pines data set, the Salinas data set, and the Houston data set are used to conduct classification 

experiments. In the feature learning procedure, 50% unlabeled samples are used as the training data, and 

the remaining 50% samples are used as the testing data. In each data set, five labeled samples per class 

are randomly selected as the training samples for the supervised classifier in the classification procedure. 
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The University of Pavia data set is acquired by the ROSIS sensor during a flight campaign over Pavia, 

Northern Italy. It has 103 spectral bands coverage from 0.43 to 0.86 μm and a geometric resolution of 1.3 

m. The image size is 610 × 340 pixels. In this data set, 42 776 pixels with nine classes are labeled. Labels, 

the number of labeled training samples, and the number of testing samples are listed in Table II. The 

second data set is the Indiana Pines data set. This data set is gathered by Airborne Visible Infrared 

Imaging Spectrometer (AVIRIS) sensor over the Indian Pines test site in Northwestern Indiana and 

consists of 145 × 145 pixels and 224 spectral reflectance bands in the wavelength range 0.4–2.5 μm; 24 

bands covering the region of water absorption are removed, resulting in 200 bands for classification. This 

scene contains two-third agriculture and one-third forest or other natural perennial vegetation; 10 249 

pixels with 16 classes are labeled. Labels, the number of labeled training samples, and the number of 

testing samples are listed in Table III.  

TABLE II 

Labels, The Number Of Labeled Training Samples, And The Number Of Testing Samples For The 

University Of Pavia Data Set 

Deep learning-based approaches for HSI categorization have recently received a lot of attention. A deep-learning 

classifier, on the other hand, is known for requiring hundreds or thousands of labelled examples to train. As a result, 

for researchers, training models to learn usable representations of HSIs in an unsupervised manner is the Holy Grail. 

We suggested the deep multiview learning method for HSI classification in this study. The proposed method could 

greatly improve classification accuracy by training the network to learn view-invariant features, especially in the 

case of small samples. Furthermore, in the HSI field, we first investigate the use of a deep residual network with 51 

layers. Experiments show that employing larger models is necessary. The improvement of classification accuracy is 

based on the idea of sacrificing training time, despite the fact that this strategy has achieved great classification 

performance. The proposed method has a disadvantage in that the training procedure takes a long time. We only 

built two views in order to make the process easier. We will create more views in the future to boost categorization 
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performance even further. Finally, the suggested technique is simple to integrate with currently available supervised 

classifiers. We only put the SVM and RF classifiers to the test. We plan to test more classifiers in the future. 

REFERENCES 

1. S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi and J. A. Benediktsson, "Deep Learning for 

Hyperspectral Image Classification: An Overview," in IEEE Transactions on Geoscience and Remote 

Sensing, vol. 57, no. 9, pp. 6690-6709, Sept. 2019, doi: 10.1109/TGRS.2019.2907932.  

2. B. Liu et al., "Morphological Attribute Profile Cube and Deep Random Forest for Small Sample 

Classification of Hyperspectral Image," in IEEE Access, vol. 8, pp. 117096-117108, 2020, doi: 

10.1109/ACCESS.2020.3004968.  

3. M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “Deep learning classifiers for hyperspectral imaging: 

A review,” ISPRS J. Photogramm. Remote Sens., vol. 158, pp. 279–317, Dec. 2019. 

4. C. Zhang, G. Li and S. Du, "Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image 

Classification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 9201-9222, 

Nov. 2019, doi: 10.1109/TGRS.2019.2925615.  

5. H. -C. Li, W. -Y. Wang, L. Pan, W. Li, Q. Du and R. Tao, "Robust Capsule Network Based on 

Maximum Correntropy Criterion for Hyperspectral Image Classification," in IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 738-751, 2020, doi: 

10.1109/JSTARS.2020.2968930. 

6. S. Koda, F. Melgani and R. Nishii, "Unsupervised Spectral–Spatial Feature Extraction With 

Generalized Autoencoder for Hyperspectral Imagery," in IEEE Geoscience and Remote Sensing Letters, 

vol. 17, no. 3, pp. 469-473, March 2020, doi: 10.1109/LGRS.2019.2921225.  

7. S. Mei, J. Ji, Y. Geng, Z. Zhang, X. Li and Q. Du, "Unsupervised Spatial–Spectral Feature Learning by 

3D Convolutional Autoencoder for Hyperspectral Classification," in IEEE Transactions on Geoscience 

and Remote Sensing, vol. 57, no. 9, pp. 6808-6820, Sept. 2019, doi: 10.1109/TGRS.2019.2908756.  

8. M. Zhang, M. Gong, Y. Mao, J. Li and Y. Wu, "Unsupervised Feature Extraction in Hyperspectral 

Images Based on Wasserstein Generative Adversarial Network," in IEEE Transactions on Geoscience and 

Remote Sensing, vol. 57, no. 5, pp. 2669-2688, May 2019, doi: 10.1109/TGRS.2018.2876123. 

9. K. He, H. Fan, Y. Wu, S. Xie and R. Girshick, "Momentum Contrast for Unsupervised Visual 

Representation Learning," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR), 2020, pp. 9726-9735, doi: 10.1109/CVPR42600.2020.00975. 

10. B. Liu, X. Yu, A. Yu, P. Zhang, G. Wan and R. Wang, "Deep Few-Shot Learning for Hyperspectral 

Image Classification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 4, pp. 2290-

2304, April 2019, doi: 10.1109/TGRS.2018.2872830.

http://www.ijcrt.org/

