www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éh INTERNATIONAL JOURNAL OF CREATIVE
? RESEARCH THOUGHTS (IJCRT)

Qa * An International Open Access, Peer-reviewed, Refereed Journal

VLSI Implementation Of Error Detection And
Correction Codes For Space Engineering

D. Mani Ayyappal, J. Vishala Devi?, M. Durga Prasad?Y. Abhi Ram*

Under the Guidance of Ms.V Jahnavi,Assistant Professor,
Electronics and Communication Engineering,
Sasi Institute of Technology And Engineering , Tadepalligudem , 534101

Abstract

The paper discusses a novel error detection and correction scheme designed for space engineering, aiming
to improve on-chip memory reliability under environmental conditions such as cosmic radiation and
extreme temperatures. The proposed 2-dimensional code uses a divide-symbol approach, leveraging XOR
operations to encode diagonal, parity, and check bits during the encoding process. The decoding process is
intricate, involving syndrome calculation and region selection, which efficiently identifies and corrects
errors. The effectiveness of the scheme is demonstrated through simulations using Xilinx Vivado, revealing
low power consumption and minimal area utilization in comparison to existing methods. This innovative
error correction methodology presents a promising solution for enhancing membry reliability in space
applications, specifically addressing issues caused by multiple cell upsets induced by radiation. The
proposed scheme's benefits include improved memory reliability, reduced power consumption, and minimal
area utilization, making it a potentially valuable tool for future space engineering endeavours.

Keywords: Error detection, correction, XOR operations, space engineering.

CHAPTER-I

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | sl

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

INTRODUCTION

The paper "VLSI Implementation of Error Detection and Correction Codes for Space Engineering" by R.
Jenila, C. Supraja, Dr. C. Kanmani Pappa, and N. Dharani explores the necessity of enhancing on-chip
memory reliability in space applications. As technology progresses, on-chip memories in a die are
susceptible to bit errors due to single events or multiple cell upsets. These upsets are often triggered by
environmental factors such as cosmic radiation, alpha, neutron particles, or extreme temperatures in space,

which can lead to data corruption.

Traditional error detection and correction techniques (ECC) are typically employed to recognize and rectify
corrupted data over the communication channel. However, these techniques may not always be effective
in dealing with multiple cell upsets (MCUs). MCUs occur when two or more bits of the same memory get

affected, posing a significant challenge for ECC techniques.

Decoder

Syndrome
calculation

Eocoder

‘m*.w'iﬁ“l i ,
. ey
Regi_bn‘ :

division

XOR & shift
operation

Corrected
output bits

Redundancy
calculation

ECC Methodology.

In response to this, the authors propose an advanced error correction 2-dimensional code based on divide-
symbol to mitigate radiation-induced MCUs in memory for space applications. This 2- dimensional code
employs XOR operations to analyze diagonal bits, parity bits, and check bits during the encoding process.
To recover the data, the XOR operation is performed again between the encoded bits and the recalculated
encoded bits.

The proposed scheme was simulated and synthesized using Xilinx Vivado implemented in Verilog HDL.
The results show that this encoding-decoding process consumes low power and occupies minimum area

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s2

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

and delay, making it a more efficient solution compared to the well-known existing methods.

The authors also discuss various existing techniques for error detection and correction, including the use
of parity checks, interleaving techniques, and error correction codes (ECCs). They highlight the limitations
of these techniques, such as increased system design complexity, area and power consumption, and the
requirement for more parity bits, more time for decoding, and more complex circuits for encoding and
decoding operations.

The paper introduces a new encoding-decoding algorithm for error correction and detection in multiple cell
upsets (MCUs). The encoding process involves reading the input 16-bit data, dividing the input data into
four groups, analyzing diagonal bits, parity bits, and check bits using XOR operation, and calculating the
syndrome values for diagonal, parity, and check bits. The decoding process involves syndrome calculation,
verification, region selection, and correction.

In conclusion, the proposed scheme can detect and correct multi-bit errors and consumes low power
compared to other existing methods. The power consumed for encoding and decoding process is 0.167W
and 0.127W respectively. Although the decoder area increases compared to other existing methods, this is
mitigated by using advanced region selection criteria.

CHAPTER-II

LITERATURE REVIEW

R. C. Baumann (2005), “Soft errors in advanced computer systems,” |EEE Des. Test. Comput.,
vol. 22, no. 3, pp. 258-266.

The paper "Soft errors in advanced computer systems™ by Robert C. Baumann provides a comprehensive
analysis of soft-error sensitivity in modern systems. Soft errors, which are transient changes in the state of a
digital circuit due to environmental factors, are a significant concern in the design and operation of
advanced computer systems. This paper demonstrates that soft-error sensitivity is largely dependent on the
application in which the system is used. The paper discusses various mechanisms through which soft errors
can occur, including radiation-induced single event upsets, which are a major source of soft errors in silicon.
It also presents a model that computes the probability that a strike at the output of a gate has an impact in
any output by traversing the circuits backwards from the outputs and gaining information about the logical
masking using signal probabilities. The paper also presents a novel hardware architecture that reduces the
cost of rollback in any kinds of circuit and detects the error in logic functions already exist, leading to a lot
of hardware overhead in non-processor design. Moreover, it introduces a fault-tolerant register latch
organization that is able to detect single-bit errors while it is clock gated and can be efficiently reused for
offline and general online testing. Overall, the paper emphasizes the importance of understanding and
managing soft errors in advanced computer systems. It suggests that soft-error sensitivity is application-

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s3

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

dependent and provides several strategies for managing soft errors, including the use of specialized
hardware architectures and the development of fault-tolerant latch organizations.

Summary: The paper introduces a novel hardware architecture for rollback reduction and a fault- tolerant
register latch organization for error detection. It highlights the importance of understanding and managing
soft errors, suggesting that sensitivity varies by application and proposing strategies such as specialized
hardware architectures and fault-tolerant latch organizations.

C.L.Chenand M. Y. Hsiao (1984), “Error-correcting codes for semiconductor memory applications: A state-
of-the-art review,” IBM J. Res. Develop., vol.28, no. 2, pp. 124-134.

The paper "Error-correcting codes for semiconductor memory applications: A state-of-the-art review" by
C. L. Chenand M. Y. Hsiao, published in IBM Journal of Research and Development in 1984, provides an
extensive review of error-correcting codes (ECCs) used in semiconductor memory applications. ECCs are
critical in ensuring the integrity and reliability of data in memory devices, which are increasingly being used
in various computing applications. The authors discuss the challenges and solutions associated with
implementing ECCs in semiconductor memory applications, including issues related to error detection and
correction, power consumption, and area constraints. The paper provides a comprehensive overview of the
state-of-the-art in ECC design and implementation, covering various types of ECCs and their applications
in semiconductor memory. The authors discuss the advantages and disadvantages of different ECC designs,
highlighting the trade-offs between error detection capability, power consumption, and implementation
complexity. The authors also explore the future directions for ECC research and development, suggesting
potential areas for improvement and innovation in ECC design and implementation. This includes the
development of more efficient error detection and correction algorithms, as well as the exploration of new
materials and fabrication techniques that could enable more reliable and energy-efficient memory devices.
The paper is highly influential in the field of semiconductor memory and ECC design, and it has been cited
by numerous subsequent papers and articles. The insights and recommendations provided in the paper
continue to guide research and development efforts in this area.

Summary: The paper suggests potential areas for future research and development in ECC design and
implementation, including the development of more efficient error detection and correction algorithms and
the exploration of new materials and fabrication techniques.

E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama, S. Yamamoto and T.Akioka
(2006), “Spreading diversity in multi-cell neutron-induced upsets with device scaling,” in Proc. IEEE
Custom Integrated Circuit Conf., pp. 437-444

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s4

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

The paper "Spreading diversity in multi-cell neutron-induced upsets with device scaling™ by E. Ibe, S.
Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama, S. Yamamoto, and T. Akioka, published in the
proceedings of the IEEE Custom Integrated Circuit Conference, addresses the issue of multi-cell neutron-
induced upsets in advanced computer systems. The study investigates the spreading of diversity in multi-
cell upsets with device scaling. Multi-cell upsets are a type of soft error that occurs when two or more bits
in the same memory location are affected simultaneously due to external factors such as cosmic rays or
radiation. These errors can cause significant problems in digital systems, especially those used in space
applications where the environment is harsh and unpredictable. The researchers conducted experiments to
observe the spreading of diversity in multi-cell upsets across different device scales. They found that as the
device scale increased, the spreading of diversity also increased. This suggests that larger devices are more
vulnerable to multi-cell upsets and that measures to mitigate these effects should be taken into account when
designing and manufacturing devices. The paper also discusses potential solutions to mitigate the impact
of multi-cell upsets. These include techniques such as error detection and correction codes, as well as
physical shielding to protect sensitive components from radiation. The authors conclude that further
research is needed to develop more effective strategies for dealing with multi-cell upsets in advanced

computer systems.

Summary: It finds that larger devices are more vulnerable to these upsets, suggesting that design and
manufacturing considerations must take this into account. Potential solutions include error detection and
correction codes and physical shielding against radiation. Further research is needed to develop more
effective strategies for dealing with multi-cell upsets.

P. Reviriego, J.A. Maestro and C. Cervantes (2007), “Reliability analysis of memories suffering
multiple bit upsets,” IEEE Trans. Device Mater. Rel., vol. 7, no. 4, pp. 592-601.

The paper "Reliability analysis of memories suffering multiple bit upsets” by P. Reviriego, J.A. Maestro,
and C. Cervantes published in IEEE Transactions on Device Materials & Reliability in 2007, addresses the
issue of multiple bit upsets in memory systems. The paper explores the problem of multiple bit upsets
(MBUSs), which occur when two or more bits of the same memory get affected. This is a significant challenge
for traditional error detection and correction techniques, as these techniques are typically designed to handle
single bit errors. The paper conducts a reliability analysis of memories suffering from MBUSs, providing
insights into the occurrence and implications of these errors. The authors examine the factors contributing
to MBUs, such as environmental conditions like cosmic radiation, alpha, neutron particles, or extreme
temperatures. They also investigate the effects of MBUs on memory reliability, demonstrating how these
errors can lead to data corruption and compromise the integrity of data storage and retrieval processes. The
paper underscores the need for advanced error correction techniques capable of handling MBUs effectively.
It contributes to the body of knowledge on memory reliability, offering valuable insights into the challenges
posed by MBUs and potential solutions for enhancing memory reliability in the face of such errors.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s5

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Summary: This paper identifies environmental factors like cosmic radiation, alpha, neutron particles, or
extreme temperatures as contributors to MBUSs. It also demonstrates how these errors can lead to data
corruption and compromise data integrity. The paper emphasizes the need for advanced error correction
techniques capable of handling MBUs effectively.

Z. Ming, X. Li Yi and L. Hong Wei (2011), “New SEC-DED-DAEC codes for multiple bit upsets
mitigation in memory,” IEEE/IFIP 19th international conference on VLSI and system-on-chip., pp.
254-259.

The paper "New SEC-DED-DAEC codes for multiple bit upsets mitigation in memory" by Z. Ming, X. Li
Yi, and L. Hong Wei, presented at the IEEE/IFIP 19th international conference on VLSI and system-on-
chip, discusses a new error correction code for the reduction of radiation- induced multiple bit upsets in
memories. The paper proposes a new error correction code that detects and corrects adjacent double bit
errors, thereby lowering the errors for non-adjacent double bit errors. The experimental results demonstrate
that it reduces 40% hardware redundancy and is more efficient compared to other existing ECC codes.
Additionally, this method minimizes the errors for non-adjacent DBE by 12% when compared with
conventional SEC-DED-DAEC codes, leading to a high reliability memory system design. The paper also
discusses the use of different sets of codes (cyclic-linear block codes) as ECC to protect memory from data
loss. This scheme exploits the localization of MCU errors, along with the features of DS codes to enhance
error correction possibilities and to reduce the decoding time. This is implemented in HDL and the
simulation result indicates that this technique is effective in reducing the decoding time and also the area
and power consumption. The authors suggest a new code to correct triple adjacent errors (SEC-DAEC-
TAEC) and 3-bit burst errors for different data word lengths (16, 32, and 64 data bits). Two optimization
criteria have been used; reducing the total number of ones in the parity check matrix minimizes decoding
time and the maximum number of ones in its rows optimizes the speed. The paper concludes that the
proposed scheme can detect and correct multi-bit errors and consumes low power compared to other
existing methods. The power consumed for encoding and decoding process is 0.167W and 0.127W
respectively. The decoder area increases compared to other existing methods, but this is reduced by using
advanced region selection criteria.

Summary: The proposed code is shown to reduce 40% hardware redundancy and minimize non- adjacent
double bit errors by 12%. The paper also discusses the use of cyclic-linear block codes for enhanced error
correction and reduced decoding time. The proposed code can detect and correct multi-bit errors with low

power consumption.

J. Guo, L. Xiao, Z. Mao and Q. Zhao (2013), “Enhanced memory reliability against multiple cell
upsets using decimal matrix code,” IEEE Trans. On very large scale integration (VVLSI) systems. pp.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s6

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

1-4.

The paper "Enhanced Memory Reliability Against Multiple Cell Upsets Using Decimal Matrix Code™ by
J. Guo, L. Xiao, Z. Mao, and Q. Zhao, published in the IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, proposes a novel decimal matrix code (DMC) based on a divide-symbol based on decimal
algorithm to achieve maximum error detection capability. The paper also introduces an encoder-reuse
technique (ERT) to minimize the area overhead of extra circuits without disrupting the entire encoding and
decoding processes. The authors argue that the DMC and ERT combination is highly influential in
enhancing memory reliability, especially in environments exposed to radiation, where transient multiple
cell upsets (MCUs) become major issues affecting the reliability of memories. The DMC minimizes area
and delay overheads compared to existing codes such as Hamming, matrix codes, and built-in current
sensors. It also improves memory reliability by enhancing the error correction capability. The paper has been
cited 89 times according to Semantic Scholar, indicating its influence in the field. It has also been
referenced in several other papers, suggesting its relevance and applicability in addressing the problem of
multiple cell upsets in memory protection.

Summary: This proposes a novel decimal matrix code (DMC) and an encoder-reuse technique (ERT) to
enhance memory reliability, particularly in environments exposed to radiation. The DMC maximizes error
detection capability and minimizes area and delay overheads, making it a valuable tool for addressing
multiple cell upsets in memory protection.

CHAPTER-III

PROPOSED METHOD

In the context of the paper, the proposed encoder and decoder are part of an error correction and detection
scheme. The encoder is responsible for transforming the input data into a coded format, while the decoder
performs the reverse operation, converting the coded data back into its original form.

Here's how the encoder and decoder work in detail:

Encoding Methodology:

The encoding process, a pivotal component in ensuring data integrity during transmission, involves several
intricate steps. Let's delve deeper into the nuances of how the encoder transforms a 16-bit input into a coded
format, infusing it with enhanced error detection and correction capabilities.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s7

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Encoding model

Data Grouping and Matrix Formation:

The initial phase entails breaking down the 16-bit input into four distinct groups—Xi, Yi, Zi, and Wi. These
groups form the basis of subsequent operations. The encoder then arranges these groups into a matrix, setting
the stage for further computations. '

X | Yo |4 | W,

Data Grouping and Matrix Formation.
XOR Operations Unveiling Diagonal, Parity, and Check Bits:
At the core of the encoding process lies a series of XOR operations on these grouped sets.

Diagonal Bits (Di): By XORing bits from Xi and Zi, the encoder introduces diagonal redundancy, crucial

for detecting errors affecting bits along the diagonals of the data matrix.

D-XZ®Y.SZeW
D~ X.®Y2RZ.2W

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s8

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Parity Bits (Pi): Comprehensive XOR operations involving bits from Xi, Yi, Zi, and Wi result in Parity
bits. This thorough parity checking enhances the encoder’s error detection capabilities.

P=X®Y.SZ2W
P:=X.9Y,®Z.9W,

Check Bits (Ci): Specific XOR operations involving input bits generate Check bits, contributing to error
identification and correction during decoding.

Cxu=XR X
Cxsu=X:9X
Cy ~Y @)
Cy. . ~Y.@Y

Resulting 32-Bit Coded Data:

The outcome of this encoding journey is a 32-bit coded data sequence. This sequence encapsulates not only
the original 16 bits but also the calculated Diagonal, Parity, and Check bits. This extended format fortifies
the data against errors, providing a robust foundation for subsequent decoding.

Error Resilience and Redundancy:

The inclusion of Diagonal, Parity, and Check bits significantly boosts the resilience of the coded data. This
redundancy, while expanding the data size, ensures the decoder's ability to detect and rectify errors during

the decoding process.
Decoding Methodology:

As data reaches its destination, the decoding process becomes paramount in reconstructing the original 16-
bit data from the coded format. Let's unravel the intricacies involved in this intricate decoding operation.

Syndrome Calculation:

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s9

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

The decoder kicks off the process by calculating syndrome values—obtained through XOR operations
between stored redundancy data and recalculated redundancy bits based on the received message. These

syndromes serve as indicators of potential errors within the received coded data.

SD.~D%RD
SP~P&RP
SC~C.RBRC

Error Identification and Analysis:

Through a meticulous analysis of calculated syndrome values, the decoder establishes conditions for
identifying the existence and location of errors. These values serve as fingerprints of discrepancies, guiding
the decoder in subsequent correction steps.

Region Selection and Error Correction:

Armed with information about errors, the decoder strategically selects regions within the coded message
that are affected. Applying correction mechanisms specific to these regions, the decoder aims to rectify

errors and restore the integrity of the data.

R IR A I W B

Wi | WL W | We | W | Wa [JW; | W W, [IWs | Wil Wy

b e Vel Se—

Region | Region 2 Region 3

Different regions of date bits.
Original Data Recovery:

The ultimate objective of the decoding process is to recover the original 16-bit data. By eliminating the
redundancy bits added during encoding, the decoder meticulously reconstructs the initial data, ensuring its
fidelity to the information before encoding.

Combinational Logic Circuits and Boolean algebra: Both the encoder and decoder operate as combinational

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s10

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

logic circuits, implying that their actions are solely determined by current input states, without reliance on
previous states or memory elements. This inherent characteristic makes combinational circuits ideal for
tasks requiring immediate responses to input changes, a crucial aspect in error correction and detection.
The foundational principles of Boolean algebra underpin the operations of both the encoder and decoder.
Boolean algebra deals with binary variables and logical operations, such as AND, OR, and XOR. In the
context of error correction coding, XOR operations play a pivotal role in manipulating and analyzing input
data. The encoder and decoder leverage these principles to ensure the accurate transformation of data during
encoding and decoding phases.

CHAPTER IV ADVANTAGES & APPLICATIONS

Advantages:

1. Space Applications

Space applications, as mentioned earlier, cover a wide array of technologies and services benefiting life on Earth.
Some of the most relevant applications include communication, navigation (e.g., GPS), Earth observation, weather
forecasting, scientific research, and more. Space missions require a combination of robust systems, efficient error
correction, and power efficiency due to the challenging environment of space.

2. Effective Error Correction in Space Communications

Error correction is crucial in space communications because of the long distances and harsh conditions of space.
Space-based communications often suffer from noise, interference, and data degradation due to the vast distances

that signals travel and the harsh environmental conditions. The following methods are commonly used in space
systems:

3. Low Power Consumption in Space Systems

Low power consumption is critical in space systems, especially for satellites, rovers, and other space
missions, because power resources (like solar panels or batteries) are limited. Efficient use of energy
ensures that the systems can run longer and perform their tasks effectively without relying heavily on
power-intensive components.

Solar Power: Many space applications rely on solar panels to generate power.

4, Advanced Error Correction Codes

Advanced error correction techniques are essential in ensuring reliable communication in space. Some of
the most advanced techniques include (Low-Density Parity-Check Codes).

Turbo Codes LDPC

Codes Polar Codes

Applications:

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | sll

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

1. Space Engineering

Space engineering involves the design, development, and operation of spacecraft, satellites, and other
systems for space exploration, communication, Earth observation, and more. Key applications include

2. Digital Electronics

Digital electronics refers to the use of discrete signals (0Os and 1s) to process and store data. These
systems are the backbone of modern technology, and they play a critical role in both space missions and
Earth-based applications

3. Telecommunications

Telecommunications play a critical role in space applications, particularly in satellite communication,
broadcasting, and space exploration. Here’s how space technology and telecommunications are
intertwined:

Satellite Communication (SATCOM): Satellites orbit Earth and provide telecommunication services, including

internet, television, and radio. Communication satellites are used for relaying signals over long distances,

particularly to remote areas that are difficult to reach with terrestrial networks.
4, Computer Memory

Computer memory, which stores data and program instructions, is essential in space applications where
systems need to store large volumes of data for processing and transmission. Memory systems need to be
reliable and durable to withstand the harsh conditions of space

Summary:

These four areas—space engineering, digital electronics, telecommunications, and computer
memory—are deeply interconnected in the context of space technology. Space engineering depends on
the efficient use of digital electronics for control and communication, while telecommunications systems
enable global connectivity and data transmission from space. At the same time, advanced memory
technologies ensure that data is reliably stored, processed, and transmitted, particularly in the challenging
environment of space. Together, these fields drive innovation in space exploration, satellite technology,
and global communications.

TX/RX CHAIN

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | sl12

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Relay medla proxy Hub & NCC
J—-) —= RE - Inter- = —_—
buffer encoder leaver MOD

Streammg
server Start/stop

2 /

Cellular network

-ty DVB-$2
satellite
— R ¢&— RSE ¢ De-inter- ¢
buffer decoder leaver De-MOD
" Smart bus receiver
Play-out
device
CHAPTERYV

XILINX AND VERILOG HDL

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s13

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

HISTORY OF VERILOG

Verilog was started initially as a proprietary hardware modeling language by Gateway Design Automation
Inc. around 1984. It is rumored that the original language was designed by taking features from the most
popular HDL language of the time, called HiLo, as well as from traditional computer languages such as C.
At that time, Verilog was not standardized and the language modified itself in almost all the revisions that
came out within 1984 to 1990.

Verilog simulator was first used beginning in 1985 and was extended substantially through 1987. The
implementation was the Verilog simulator sold by Gateway. The first major extension was Verilog-XL,
which added a few features and implemented the infamous "XL algorithm” which was a very efficient
method for doing gate-level simulation.

The time was late 1990. Cadence Design System, whose primary product at that time included thin film
process simulator, decided to acquire Gateway Automation System. Along with other Gateway products,
Cadence now became the owner of the Verilog language, and continued to market Verilog as both a
language and a simulator.

At the same time, Synopsys was marketing the top-down design methodology, using Verilog. This was a
powerful combination. In 1990, Cadence recognized that if Verilog remained a closed language, the
pressures of standardization would eventually cause the industry to shift to VHDL. Consequently, Cadence
organized the Open Verilog International (OVI), and in 1991 gave it the documentation for the Verilog
Hardware Description Language. This was the event which "opened" the language.

INTRODUCTION

. HDL is an abbreviation of Hardware Description Language. Any digital system can be
represented in a REGISTER TRANSFER LEVEL (RTL) and HDLSs are used to describe this RTL.

. Verilog is one such HDL and it is a general-purpose language —easy to learn and use. Its syntax
is similar to C.

. The idea is to specify how the data flows between registers and how the design processes the
data.

o To define RTL, hierarchical design concepts play a very significant role. Hierarchical design

methodology facilitates the digital design flow with several levels of abstraction.

. Verilog HDL can utilize these levels of abstraction to produce a simplified and efficient
representation of the RTL description of any digital design.

. For example, an HDL might describe the layout of the wires, resistors and transistors on an
Integrated Circuit (IC) chip, i.e., the switch level or, it may describe the design at a more micro level in terms

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | sl4

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

of logical gates and flip flops in a digital system, i.e., the gate level. Verilog supports all of these levels.

DESIGN STYLES:

Any hardware description language like Verilog can be design in two ways one is bottom-up design
and other one is top-down design.

Bottom-Up Design:

The traditional method of electronic design is bottom-up (designing from transistors and moving to a
higher level of gates and, finally, the system). But with the increase in design complexity traditional
bottom-up designs have to give way to new structural, hierarchical design methods.

Top-Down Design:

For HDL representation it is convenient and efficient to adapt this design-style. A real top-down design
allows early testing, fabrication technology independence, a structured system design and offers many
other advantages. But it is very difficult to follow a pure top-down design. Due to this fact most designs are
mix of both the methods, implementing some key elements of both design styles.

Features of Verilog HDL

. Verilog is case sensitive.

. Ability to mix different levels of abstract freely.

. One language for all aspects of design, testing, and verification.

. In Verilog, Keywords are defined in lower case.

. In Verilog, Most of the syntax is adopted from "C" language.

. Verilog can be used to model a digital circuit at Algorithm, RTL, Gate and Switch level.
. There is no concept of package in Verilog.

. It also supports advanced simulation features like TEXTIO, PLI, and UDPs.

VLSI DESIGN FLOW

The VLSI design cycle starts with a formal specification of a VLSI chip, follows a series of steps, and
eventually produces a packaged chip.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s15

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

VLSI
DESIGN
FLOw ‘

[SHymtam Spocitioation J

Functiornml
(Architecturm) Daosign —

.

Bahavioral Functional Verification
Mupresantation

[Logio Dasign

Logio ‘

(Clata-laval)
Mepranantation

Logio Verification

.

I Clreult Dasign

v

Clrouit Cireult Vuriflention
Maepresantation

I Fhysical Dexign I---w —

Layout I Layout Varifiestion
Roprosentation

Fabrication & Testing

T

I

System Specification:

The first step of any design process is to lay down the specifications of the system. System specification is
a high level representation of the system. The factors to be considered in this process include: performance,

functionality, and physical dimensions like size of the chip.

The specification of a system is a compromise between market requirements, technology and economical
viability. The end results are specifications for the size, speed, power, and functionality of the VLSI system.

Architectural Design

The basic architecture of the system is designed in this step. This includes, such decisions as RISC (Reduced
Instruction Set Computer) versus CISC (Complex Instruction Set Computer), number of ALUs, Floating
Point units, number and structure of pipelines, and size of caches among others. The outcome of
architectural design is a Micro-Architectural Specification (MAS).

Behavioral or Functional Design:

In this step, main functional units of the system are identified. This also identifies the interconnect
requirements between the units. The area, power, and other parameters of each unit are estimated.
Modules. The key idea is to specify behavior, in terms of input, output and timing of each unit, without
specifying its internal structure.

The outcome of functional design is usually a timing diagram or other relationships between units.

Logic Design:

In this step the control flow, word widths, register allocation, arithmetic operations, and logic operations of
the design that represent the functional design are derived and tested.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | sl16

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

This description is called Register Transfer Level (RTL) description. RTL is expressed in a Hardware
Description Language (HDL), such as VHDL or Verilog. This description can be used in simulation and
verification

Circuit Design:

The purpose of circuit design is to develop a circuit representation based on the logic design. The Boolean
expressions are converted into a circuit representation by taking into consideration the speed and power
requirements of the original design. Circuit Simulation is used to verify the correctness and timing of
each component

The circuit design is usually expressed in a detailed circuit diagram. This diagram shows the circuit
elements (cells, macros, gates, transistors) and interconnection between these elements. This

representation is also called a netlist. And each stage verification of logic is done.

Physical design:

In this step the circuit representation (or netlist) is converted into a geometric representation. As stated
earlier, this geometric representation of a circuit is called a layout.

Layout is created by converting each logic component (cells, macros, gates, transistors) into a geometric
representation (specific shapes in multiple layers), which perform the intended logic function of the
corresponding component. Connections between different components are also expressed as geometric

patterns typically lines in multiple layers.

Layout verification:

Physical design can be completely or partially automated and layout can be generated directly from netlist by
Layout Synthesis tools. Layout synthesis tools, while fast, do have an area and performance penalty, which
limit their use to some designs. These are verified.

Fabrication and Testing:

Silicon crystals are grown and sliced to produce wafers. The wafer is fabricated and diced into individual
chips in a fabrication facility. Each chip is then packaged and tested to ensure that it meets all the design
specifications and that it functions properly.

MODULE:

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | sl7

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

A module is the basic building block in Verilog. It can be an element or a collection of low level design
blocks. Typically, elements are grouped into modules to provide common functionality used in places of
the design through its port interfaces, but hides the internal implementation.

Syntax:

module<module name> (<module_port_list>);

<module internals> //contents of the module

Endmodule

Instances

A module provides a template from where one can create objects. When a module is invoked Verilog
creates a unigque object from the template, each having its own name, variables, parameters and 1/O
interfaces. These are known as instances.

Ports:

o Ports allow communication between a module and its environment.
o All but the top-level modules in a hierarchy have ports.

. Ports can be associated by order or by name.

You declare ports to be input, output or inout. The port declaration syntax is: Input
[range_val:range_var] list_of identifiers; output[range_val:range_var]
list_of identifiers;

inout[range_val:range_var] list_of_identifiers;
Identifiers

o Identifiers are user-defined words for variables, function names, module names, and
instance names. Identifiers can be composed of letters, digits, and the underscore character.

) The first character of an identifier cannot be a number. Identifiers can be any length.

o Identifiers are case-sensitive, and all characters are significant.

An identifier that contains special characters, begins with numbers, or has the same name as a keyword can

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s18

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

be specified as an escaped identifier. An escaped identifier starts with the backslash character(\) followed
by a sequence of characters, followed by white space.

Keywords:

. Verilog uses keywords to interpret an input file.

. You cannot use these words as user variable names unless you use an escaped identifier.
. Keywords are reserved identifiers, which are used to define language constructs.

. Some of the keywords are always, case, assign, begin, case, end and end case etc.

.

Data Types:

Verilog Language has two primary data types:
. Nets - represents structural connections between components.

o Registers - represent variables used to store data. Every
signal has a data type associated with it. Data types are:

o Explicitly declared with a declaration in the Verilog code.

. Implicitly declared with no declaration but used to connect structural building blocks in the
code. Implicit declarations are always net type "wire" and only one bit wide.

Register Data Types

o Registers store the last value assigned to them until another assignment statement changes
their value

. Registers represent data storage constructs.

. Register arrays are called memories.

o Register data types are used as variables in procedural blocks.

. A register data type is required if a signal is assigned a value within a procedural block

o Procedural blocks begin with keyword initial and always.

The data types that are used in register are register, integer, time and real.

MODELING CONCEPTS:

Abstraction Levels:

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s19

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

o Behavioral level

o Register-Transfer Level
J Gate Level

o Switch level

Behavioral or algorithmic Level

. This level describes a system by concurrent algorithms (Behavioral).

. Each algorithm itself is sequential meaning that it consists of a set of instructions that are
executed one after the other.

o The blocks used in this level are ‘initial’, ‘always’ ,‘functions’ and ‘tasks’ blocks

o The intricacies of the system are not elaborated at this stage and only the functional
description of the individual blocks is prescribed.

. In this way the whole logic synthesis gets highly simplified and at the same time more
efficient.

Register-Transfer Level:

. Designs using the Register-Transfer Level specify the characteristics of a circuit by
operations and the transfer of data between the registers.

o An explicit clock is used. RTL design contains exact timing possibility, operations are
scheduled to occur at certain times.

o Modern definition of a RTL code is "Any code that is synthesizable is called RTL code".
Gate Level:
. Within the logic level the characteristics of a system are described by logical links and their

timing properties.
o All signals are discrete signals. They can only have definite logical values (0, '1', "X,
"Z’). The usable operations are predefined logic primitives (AND, OR, NOT etc gates).

o It must be indicated here that using the gate level modeling may not be a good idea in logic
design.
o Gate level code is generated by tools like synthesis tools in the form of netlists which are used

for gate level simulation and for backend.

OPERATORS

Verilog provided many different operators types. Operators can be,

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s20

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

o Arithmetic Operators

o Relational Operators

o Bit-wise Operators

. Logical Operators

o Reduction Operators

. Shift Operators

. Concatenation Operator
. Conditional Operator

Arithmetic Operators

. These perform arithmetic operations. The + and - can be used as either unary (-z) or binary (x-
y) operators.

o Binary: +, -, *, /, % (the modulus operator)

o Unary: +, - (This is used to specify the sign)

. Integer division truncates any fractional part

o The result of a modulus operation takes the sign of the first operand

. If any operand bit value is the unknown value X, then the entire result value is x

. Register data types are used as unsigned values (Negative numbers are stored in two's

complement form).

Relational Operators

Relational operators compare two operands and return a single bit 1or 0. These operators synthesize into
comparators. Wire and reg variables are positive Thus (-3’b001) ==3’b111 and (- 3d001)>3d1 10, however
for integers -1<>

a<b aless thanb

a>b a greater than b

a<=bh a less than or equal to b
a>=b a greater than or equal to b

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s21

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

. The result is a scalar value

o 0 if the relation is false (a is bigger than b)
. 1 if the relation is true (a is smaller than b)
. x if any of the operands has unknown x bits (if a or b contains X)

Note: If any operand is x or z, then the result of that test is treated as false (0)

Bit-wise Operators

Bitwise operators perform a bit wise operation on two operands. This take each bit in one operand and
perform the operation with the corresponding bit in the other operand. If one operand is shorter than the other,
it will be extended on the left side with zeroes to match the length of the longer operand

~ negation

& and

| inclusive or
Fat

exclusive or

M or ~" exclusive nor (equivalence)

Computations include unknown bits, in the following way:
->~X =X

->0&x=0

-> 1&X = X&X =X

>]1x=1

> 0X = XX =X

S0 =1 = XM =X

-S> 0A~X = IM~X = XA~X = X

When operands are of unequal bit length, the shorter operand is zero-filled in the most significant bit
positions.

Logical Operators

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s22

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Logical operators return a single bit 1 or 0. They are the same as bit-wise operators only for single bit
operands. They can work on expressions, integers or groups of bits, and treat all values that are nonzero as
“1”. Logical operators are typically used in conditional (if ... else) statements since they work with
expressions.

! logic negation
&& logical and

Il logical or

Expressions connected by && and || are evaluated from left to right Evaluation stops
as soon as the result is known

The result is a scalar value:

. 0 if the relation is false
. 1if the relation is true
. x if any of the operands has x (unknown) bits

Reduction Operators

Reduction operators operate on all the bits of an operand vector and return a single-bit value. These are the
unary (one argument) form of the bit-wise operators.

& and
~& nand
| or
~| nor
P Xor
A or ~N Xnor
o Reduction operators are unary.
o They perform a bit-wise operation on a single operand to produce a single bit result.
o Reduction unary NAND and NOR operators operate as AND and OR respectively, but with

their outputs negated.

Shift Operators
IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s23

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Shift operators shift the first operand by the number of bits specified by the second operand. Vacated

positions are filled with zeros for both left and right shifts (There is no sign extension).

<< left shift
>> right shaft
o The left operand is shifted by the number of bit positions given by the right operand.
o The vacated bit positions are filled with zeroes
Concatenation Operator
. The concatenation operator combines two or more operands to form a larger vector.
. Concatenations are expressed using the brace characters { and }, with commas separating the
expressions within.
. ->Example: + {a, b[3:0], ¢, 4'b1001} // if a and c are 8-bit numbers, the results has 24 bits
o Unsized constant numbers are not allowed in concatenations

Operator Precedence

Unary, Multiply., Divide,

Modulus L~ %%
Add, Subtract, Shift +, -, 2>
Relation, Equality < B a=pe= == |—
Reduction &, N & AN~ |~
Logic &&, ||
Conditional ?:
Switch Level:

This is the lowest level of abstraction. A module can be implemented in terms of switches, storage nodes
and interconnection between them. However, as has been mentioned earlier, one can mix and match all the
levels of abstraction in a design. RTL is frequently used for Verilog description that is a combination of

behavioral and dataflow while being acceptable for synthesis.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s24

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Xilinx Verilog HDL Tutorial

Getting started

Frist we need to download and install Xilinx and ModelSim. These tools both have free student versions.
Please accomplish Appendix B, C, and D in that order before continuing with this tutorial. Additionally if
you wish to purchase your own Spartan3 board, you can do so at Digilent’s Website. Digilent offers academic
pricing. Please note that you must download and install Digilent Adept software. The software contains the
drivers for the board that you need and also provides the interface to program the board.

Introduction

Xilinx Tools is a suite of software tools used for the design of digital circuits implemented using Xilinx
Field Programmable Gate Array (FPGA) or Complex Programmable Logic Device (CPLD). The design
procedure consists of (a) design entry, (b) synthesis and implementation of the design, (c) functional
simulation and (d) testing and verification. Digital designs can be entered in various ways using the above
CAD tools: using a schematic entry tool, using a hardware description language (HDL) — Verilog or VHDL
or a combination of both. In this lab we will only use the design flow that involves the use of Verilog HDL.

The CAD tools enable you to design combinational and sequential circuits.starting with Verilog HDL
design specifications. The steps of this design procedure are listed below:

1. Create Verilog design input file(s) using template driven editor.

2. Compile and implement the Verilog design file(s).

3. Create the test-vectors and simulate the design (functional simulation) without using a PLD
(FPGA or CPLD).

4, Assign input/output pins to implement the design on a target device.

5. Download bitstream to an FPGA or CPLD device.

6. Test design on FPGA/CPLD device

A Verilog input file in the Xilinx software environment consists of the following segments:
Header: module name, list of input and output ports.

Declarations: input and output ports, registers and wires.

Logic Descriptions: equations, state machines and logic functions.

End: endmodule
All your designs for this lab must be specified in the above Verilog input format. Note that the

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s25

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

state diagram segment does not exist for combinational logic designs.

Programmable Logic Device: FPGA

In this lab digital designs will be implemented in the Basys2 board which has a Xilinx Spartan3E —
XC3S250E FPGA with CP132 package. This FPGA part belongs to the Spartan family of FPGAs. These
devices come in a variety of packages. We will be using devices that are packaged in 132 pin package with
the following part number: XC3S250E-CP132.

Creating a New Project

¢ New Project :Z-
Project Type
Specity the type of project 1o create ﬂ
+ RTL Project

You will be able to add sources, oreate block designs In IP Integrator, generate IP, run RTL analysis,
synthasis, impiementation, design planning and analysis

Do not specify soufces at this ime

Post-synthesis Project You wall be able 1o add sources, view device resources, run design analysis,
planning and impiementation

10 Planning Projec
Do not specfy design sources. You will be able to view partipackage resources

Imported Project
Create a \Wado project from a Synplity, XST or ISE Project File

Example Project
Create a new Vivado projed from 3 predefined tempiate

2) ‘ < Back m} ’ Cancel

Creating Projects You can use the New Project wizard to easily create different types of projects in the
Vivado IDE. To open the New Project wizard, select File > New Project. This wizard enables you to specify
a project location and name and create the types of projects shown in below figure

New Project Wizard—Project Type Page

Project Name: Write the name of your new project which is user defined.

Project Location: The directory where you want to store the new project in the specified location in one
of your drive. In above window they are stored in location ¢ drive which is not correct, the location of
software and code should not be same location and Clicking on NEXT. For each of the properties given

below, click on the ‘value’ area and select from the list of values that appear.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s26

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

. Device Family: Family of the FPGA/CPLD used. In this laboratory we will be using the
Spartan3E FPGA'’s.

. Device: The number of the actual device. For this lab you may enter XC3S250E (this can be
found on the attached prototyping board)

. Package: The type of package with the number of pins. The Spartan FPGA used in this lab
is packaged in CP132 package.

. Speed Grade: The Speed grade is “-4”.

. Synthesis Tool: XST [VHDL/Verilog]

. Simulator: The tool used to simulate and verify the functionality of the design. Then

click on NEXT to save the entries.
Opening Designs:

Use the Flow Navigator or Flow menu to select the following commands:

J Open Elaborated Design
. Open Synthesized Design
. Open Implemented Design

The Flow > Open Implemented Design command populates the Vivado IDE as shown in below figure.

J project bht - [CAXTlinkWoaspace/ praiect_bR/project bitapr] - Vivado =) 2 fntal
1 3 Melr mplsmentyton Compite

> = b, BN OB O X

.....

* WAPLEMENTATION mdd

> Runinplenestatar

Mottsihbay

bt methodoiogy 1 I8 veoltone |

Implemented design

All project files such as schematics, netlists, Verilog files, VHDL files, etc., will be stored in a subdirectory

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s27

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

with the project name.

In order to open an existing project in Xilinx Tools, select File->Open Project to show the list of projects on
the machine. Choose the project you want and click OK.

If creating a new source file, click on the NEW SOURCE.

Creating a Verilog HDL input file for a combinational logic design:

In this lab we will enter a design using a structural or RTL description using the Verilog HDL. You can
create a Verilog HDL input file (.vfile) using the HDL Editor available in the Xilinx Vivado Tools (or
any text editor).

In the previous window, click on the NEW SOURCE

(Note: “Add to project” option is selected by default. If you do not select it then you will have to add the
new source file to the project manually.)

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s28

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Select Verilog Module and in the “File Name:” area, enter the name of the Verilog source file you are
going to create. Also make sure that the option Add to project is selected so that the source need not be
added to the project again. Then click on Next to accept the entries.

In the Port Name column, enter the names of all input and output pins and specify the Direction accordingly.
A Vector/Bus can be defined by entering appropriate bit numbers in the MSB/LSB columns. Then click on
Next>to get a window showing all the new source information above window. If any changes are to be made,
just click on <Back to go back and make changes. If everything is acceptable, click on Finish > Next > Next
> Finish to continue.

Once you click on Finish, the source file will be displayed in the sources window in the Project Navigator.
If a source has to be removed, just right click on the source file in the Sources in Project window in the
Project Navigator and select remove in that. Then select Project -> Delete Implementation Data from the
Project Navigator menu bar to remove any related files.

Editing the Verilog source file

The source file will now be displayed in the Project Navigator window (Figure 8). The source file window
can be used as a text editor to make any necessary changes to the source file. All the input/output pins will
be displayed. Save your Verilog program periodically by selecting the File-

>Save from the menu. You can also edit Verilog programs in any text editor and add them to the project
directory using “Add Copy Source”.

Here in the above window we will write the Verilog programming code for specified design and algorithm
in the window.

After writing the programming code we will go for the synthesis report.

Configuring Project Settings

You can configure the Project Settings in the Settings dialog box to meet your design needs. These settings
include general settings, related to the top module definition and language options, as well as simulation,
elaboration, synthesis, implementation, bitstream, and IP settings.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org | s29

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

¢ Settings -ﬁ-
General
Project Settings Specify values for vanous seffings used throughout the design fiow #
These setling Iy {o the current project
General es gs applyfo t U proje
Simutation
Elaboration Name project_bft
Synthesis Project device) xc7k70iMg484-2 (active)
Implamentation
Target fapguage VHDL v
Bitstream
> P Default library ©il_defaultlis
Tool Settings Top module name
Project
P Defaults Language Options
Source File ‘
Venlog options verilog_version=Vernlog 2001 [wee
Display = b 2. 9 L
WebdTalk GenerncefParameters ‘
Help -
Loop count 1,000 _
> Text Editor

3rd Party Simulators
* Colors

Selection Rules

Shortcuts

Strategies

» Window Behawor

?) “ ! Cancel Reslore

Settings Dialog Box—Project Settings General Category

To open the Settings dialog box, use any of the following methods:
. In the Flow Navigator Project Manager section, click Settings.
« Select Tools > Settings.

. In the main toolbar, click the Settings toolbar button .

. In the Project Summary, click the Edit link next to Settings.

Synthesis and Implementation of the Design:

The design has to be synthesized and implemented before it can be checked for correctness, by running
functional simulation or downloaded onto the prototyping board. With the top-level Verilog file opened (can
be done by double-clicking that file) in the HDL editor window in the right half of the Project Navigator,
and the view of the project being in the Module view , the implement design option can be seen in the
process view. Design entry utilities and Generate Programming File options can also be seen in the
process view.

To synthesize the design, double click on the Synthesize Design option in the Processes window. To
implement the design, double click the Implement design option in the Processes window. It will go through

steps like Translate, Map and Place & Route. If any of these steps could not be done or done with errors,
IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s30

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

it will place a X mark in front of that, otherwise a tick mark will be placed after each of them to indicate the
successful completion
After synthesis right click on synthesis and click view text report in order to generate the report of our design.

XILINX VIVADO SIMULATION PROCEDURE:
After completion of synthesis we will go simulation in order to verify the functionality of the implemented
design.

Click on Run Simulation and set the module that is need to Run

Next double click on Run Behavioral Simulation to check the errors. If no errors are found then double
click on simulate behavioral model to get the output waveforms.

After clicking on simulate behavioral model, the simulation widow will appear pass the input values by
making force constant and if it is clock by making force clock. Mention the simulation period and run for
certain time and results will appear as shown in following window. Verify the results to the given input
values.

Using the Schematic Window:
You can generate a Schematic window for any level of the logical or physical hierarchy. You can select a

logic element in an open window, such as a primitive or net in the Netlist window, and use the Schematic
command in the popup menu to create a Schematic window for the selected object.

An elaborated design always opens with a Schematic window of the top-level of the design, as shown in
below figure.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org | s31

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

3 -

¥ 3
3= El e e

woan oews |
{'(Vhr"
WO 4 W

w0

L= =x o)

Schematic window

Using the Project Summary

The Vivado IDE includes an interactive Project Summary (Figure 3-11) that updates dynamically as design
commands are run and the design progresses through the design flow. It provides project and design
information, such as the project part, board, and state of synthesis and implementation. It also provides links
to detailed information, such as links to the Messages and Reports windows as well as the Settings dialog

box.

As synthesis and implementation complete, DRC violations, timing values, utilization percentages, and power

estimates are also populated. To open the Project Summary, do either of the following:

. Select Window > Project Summary.
* Click the Project Summary toolbar button.

IJCRT21X0329 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

s32

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

* Project Summary

soean R sen
- S oy -
T T e
" v
- e S
e
9 Ve -~y -
way W hnaraz

xncama Berip—— v miwg
o -
" it Do
- ~
- -
. P
- v
¥ ™ . e
o Fo
‘
- -
- W
P w
——— | N
e -

CHAPTER VI

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s33

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

RESULTS

RTL Schematic of Encoder:

0o

Schematic RTL Decoder:

IJCRT21X0329 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

|

s34

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

17

|]
| |

f

L1
| [

T
I-;'r-;'r-;'r:'r-;'r TYTYY s'rs'rq'r-;'ré‘r-;'rq'rq'r-;'r-;'rjr

1|0

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s35

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Elaboration Design of Encoder:

Tr 17

T TTTY

Elaboration Design Decoder:

o 2 /(l 3 S
Coreced 355_0 =2 . | j > 1 T M0 AL
ctet a2t D—:j: e Coreost s 0 | LR <A E
/ i 3 oY [-
FTL MR R :L_ = [—— Chenaut B omcet B
| ~ st |
Coradet 35 §
— Coreded 34 ! . LW
= Coreoet 1) _* Mor PN L w
:D Corecet 107 _ R Tam w
LA L ;‘j: :1 Ps 2 7
Caroce 52 s . LN
Corosed 34 2 ,Jﬁn . LR Comecnt 3
@-—-:I}__ e Coreasd 12/ 1 Soced 0 | {
L T = — N |
Coreded)= e Ly h -—
. Coruned 33 FILN0R i . e ——
X %200 X e | ¥ &
Cary Te= un | Semded spd B3
AL ———
LI % Comacns Y
7 oS
AL AR Comane X '\ CeL080 SAOTE:
Corecsd Y
* b /J
Pt - . fAwa
LW LMD ATLFEG AT
Corecse 7 = |
> -L'"'l res Comemas I
L
deo pp O | S |)—
]
e oo ATL W

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s36

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Encoder Delay:

Statistics
Type
Max Delay
Min Delay
Decoder Delay:
Statistics
Type
Max Delay
Min Delay
Encoder Resource utilization:
Resource Utilization
LUT
FF
0

Decoder Resource utilization:

Total Endpoints

128

128

Total Endpoints

64
64
Available Utilization %
g 53200 0.02
3 106400 0.03
dll 200 25.00

IJCRT21X0329 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s37

http://www.ijcrt.org/
http://www.ijcrt.org/

wwwi.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Resource
LUT

FF

10

Encoder Simulation:

Unitled 1

QW &e. x-

MM

Utilization Available Utilization %
17 53200 0.03
16 106400 0.02
38 200 18.00

Decoder Simulation:

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org | s38

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

mtitled 1

QEQa Lk W [B

CHAPTER VII CONCLUSION

The paper "VLSI Implementation of Error Detection and Correction Codes for Space Engineering" presents
a novel approach to enhancing memory reliability in space applications. The authors propose a new error
correction 2-dimensional code that effectively detects and corrects errors, thus mitigating the risk of data
corruption in volatile memories. This novel scheme was successfully simulated and synthesized using

Xilinx Vivado implemented in Verilog HDL.

The power consumed during the encoding and decoding process was found to be significantly low, and the
area and delay occupied were minimal compared to existing methods. This makes the proposed algorithm
a viable solution for space engineering, where energy efficiency is paramount. The algorithm is expected to
be extended to further reduce the area, delay, and power consumption, making it an ideal choice for harsh
environments where resources are scarce.

The authors also demonstrated that the proposed algorithm can detect and correct multi-bit errors, a critical
feature for maintaining data integrity in space applications. The algorithm's effectiveness was validated
through simulation results, showing that after decoding, the original data is accurately retrieved, proving
its effectiveness in error correction and detection.

In conclusion, the paper presents a promising solution for error correction and detection in multiple cell upset
(MCUEs) in space engineering. The proposed algorithm provides a way to enhance memory reliability, a
critical aspect in space applications. Its successful simulation and synthesis, combined with its low power
consumption and minimal area and delay, make it an attractive choice for future implementations. However,
the authors acknowledge that there is room for improvement, particularly in terms of reducing the decoder
area. Future work could focus on exploring more advanced region selection criteria to further optimize the
algorithm.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org | s39

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

REFERENCES:

> R. C. Baumann (2005), “Soft errors in advanced computer systems,” IEEE Des. Test. Comput.,
vol. 22, no. 3, pp. 258-266.
> C. L. Chen and M. Y. Hsiao (1984), “Error-correcting codes for semiconductor memory

applications: A state-of-the-art review,” IBM J. Res. Develop., vol.28, no. 2, pp. 124-134.

> E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama, S. Yamamoto and
T.Akioka (2006), “Spreading diversity in multi-cell neutron-induced upsets with device scaling,” in Proc.
IEEE Custom Integrated Circuit Conf., pp. 437-444.

> P. Reviriego, J.A. Maestro and C. Cervantes (2007), “Reliability analysis of memories suffering
multiple bit upsets,” IEEE Trans. Device Mater. Rel., vol. 7, no. 4, pp. 592-601.

> G. C. Yang (1995), “Reliability of semiconductor RAMSs with soft-error scrubbing techniques,”
IEEE Proc. Computers and Digital techniques, vol. 142, no. 5, pp. 337-344.

> P. Reviriego, J. Maestro, S. Wen and R. Wong (2010), “Protection of memories suffering MCUs
through the selection of the optimal interleaving distance,” IEEE Trans. On nuclear science., vol. 57, no. 4,
pp. 2124-2128.

> Z.Ming, X. Li Yiand L. Hong Wei (2011), “New SEC-DED-DAEC codes for multiple bit upsets
mitigation in memory,” IEEE/IFIP 19th international conference on VLSI and system-on-chip., pp. 254-
259.

> P. Reviriego, S. Liu, L. Xiao and J. Maestro (2015), ”An efficient single and double- adjacent
error correcting parallel decoder for the (24, 12) extended golay code,” IEEE Trans. On very large scale
integration (VLSI) systems, pp. 1-4.

> J. Guo, L. Xiao, Z. Mao and Q. Zhao (2013), “Enhanced memory reliability against multiple
cell upsets using decimal matrix code,” IEEE Trans. On very large scale integration (VLSI) systems., pp.
1-4.

IJCRT21X0329 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | s40

http://www.ijcrt.org/
http://www.ijcrt.org/

