IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Analytical Method Development And Validation For Estimation Of Finasteride Hydrochloride By Rp-Hplc

¹ Mr.Sachinkumar Dabhadikar, ² Dr. Narendra .M. Gowekar, ³ Mr.Mahesh.D.Gade,

⁴Vaishnavi.V.Ghule, ⁵Milka.A.Jadhav

¹Asst manager, ²Advisor-Approval Bureau, ³Assistant Professor, ⁴Student(Bpharm), ⁵Student(Bpharm) ¹ Serum Institute, pune, ² Pharmacy Council of India(PCI) Delhi, ³Dr. Kolpe Institute of Pharmacy, Kopargoan, India, ⁵Dr. Kolpe Institute of Pharmacy, Kopargoan, India.

Abstract: A simple and sensitive reverse-phase HPLC method has been developed to analyze Finasteride. HPLC system used was a JASCO system equipped with model PU 4180 RHPLC pump, Rheodyne sample injection port (20 μl), JASCO UV-4075 UV-VIS detector, and ChromNAV CFR chromatography software (version 2.0). Separation was carried out on HiQSil C18 (250 mm × 4.6 mm, 5 μm) column. The analytewas monitored byUV detectionat 245using anisocratic modewithbufferandmethanolintheratio520:480v/vasmobile

phase. Theflowratewasset at 1.0 ml/min. Theretention time for the drug was at 4.540 min. Calibration curves for Finasteride were recorded. The method was validated for system suitability, linearity, precision, accuracy, specificity, ruggedness, robustness, LOD, and LOQ. The system suitability parameters were within the limit. Hence it was concluded that the system was suitable to perform the assay. The method shows linearity between the 10-60 µg/ml concentration ranges. The % recovery of Finasteride was found to be in the field of 99.86 % - 101.78 %. The method was found to be specific because there was no interference due to excipients and the mobile phase. The method was robust and rugged, as observed from insignificant variation in the analysis results by changes in Flow rate and wavelength separately and analysis performed by different analysts. Hence it can be concluded that the proposed method was a promising approach for obtaining reliable results and was found to be suitable for the routine analysis of Finasteride in the pharmaceutical formulation.

Keywords: RP-HPLC, Finasteride, and ChromNAVCFR.

1.INTRODUCTION

High Performance Liquid Chromatography (HPLC) was derived from the classical column chromatography and, is one of the most important tools of analytical chemistry today. The principle is that a solution of the sample is injected into column of porous material (stationaryphase)andaliquid(mobilephase)ispumpedathighpressurethroughthecolumn. The separation of sample based on the differences in the rates migration through the columnarising from different partition of the sample between the stationary and mobile phase.

Dependinguponthepartitionbehaviorofdifferentcomponents, elutionat different time takes place. The technique,

chromatography was originally developed by the Russian botanist M.S Tswett in 1903.1 High Performance Liquid Chromatography is more versatile than gas chromatographysince(a) it is not limited to volatileand thermallystablesamples, and (b)the choice of mobile and stationary phases is wider. [1]A schematic diagram of HPLC system is shown in Figure-1.

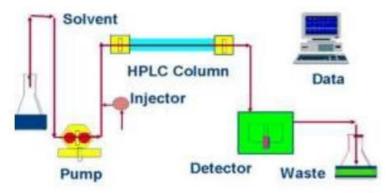


Figure-1:Flow Diagramof HPLC

HPLCascompared with the classical LCtechnique is characterised by [2]:

- Highresolution.
- Smalldiameter(4.6mm), stainless steel, glass or titanium columns.
- Columnpacking with very small (3,5 and 10μm) particles.
- Relativelyhighinlet pressuresand controlledflow of themobile phase.
- Continuous flow detectors capable of handlings mall flow rates and detecting very small amounts.
- Rapidanalysis

Analyticalmethod development

Analytical method development and validation play important roles in the discovery development and manufacture of pharmaceuticals. These methods used to ensure the identity, purity, potency, & performance of drug products. There are many factors to consider when

developingmethods. Theinitially collect the information about the analyte's physicochemical properties (pKa, logP, solubility) and determining which mode of detection would be suitable for analysis (i.e., suitable wavelength in case of UV detection). The majority of the analytical development effort goes into validating a stability indicating HPLC—method. The goal of the HPLC-method is to separate quantify the main active drug, any reaction impurities, all available synthetic inter-mediates and any degradants. [3]

Stepsinvolvein methoddevelopment are:

- 1. Qualified and calibrated instrument
- 2. Documentedmethods
- 3. Reliablereferencestandards
- 4. Qualifiedanalysts
- 5. Sampleselection and integrity
- 6. Theanalysis shouldtake aminimaltimeandshould beeconomical.
- 7. Theaccuracyof theanalysis mustaccepttheguidelinesofPharmacopoeia.
- 8. The chosen methods hould be precise and selective.

- 9. SetupHPLCconditions.
- 10. Preparation of samples olution for method development.
- 11. Methodoptimization.
- 12. DevelopmentandValidationof method

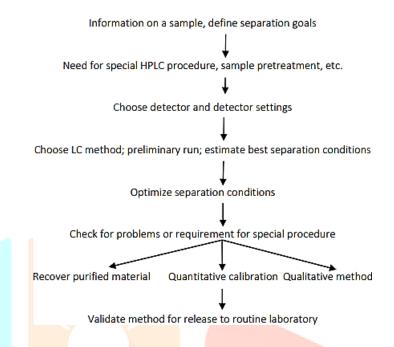


Figure-2:StepsinvolvedinHPLCMethodDevelopmentandValidation

PurposeofanalyticalmethoddevelopmentDruganalysisrevealstheidentification

characterization & determination of the medication in mixtures like indefinite quantity forms & biological fluids. throughout producing method and drugdevelopment the most purpose of analytical ways is to produce is info regarding efficiency (which directly associated with the needofanotabledose),impurity(relatedtosafetyprofileofthedrug),bioavailability(includes key drug characteristics like crystal type, drug uniformity and drug release), stability (which indicates the degradation products), and impact of producing parameters to make sure that the assembly of drug merchandise is consistent. [5]

Theidea of internal control is meant to look at and establish a real and right product by series of measures designed avoid and find eliminate errors at varied stages in production. requireachoicetounharnessordiscardaproductreliesononeoralotofformsofmanagement actions. Providing easy analytical method for varied complicated formulations and may be subjectmaterial of utmost importance. Fast increase in pharmaceutical industries and constant production of drug in varied components of the globe has brought a fast rise in demand for brand new analytical techniques within the pharmaceutical industries as a consequence; analytical methodology development has become the essential activity of study during a internal control laboratory. [5]

Thereasonsfortheeventofnovelways ofdruganalysis are:

- a) Oncethere's no official drug or drug combination out the rewithin the pharmacopoeias.
- b) Once there's no decorous analytical method for the present drug within the literature thanks to patent laws.

- c) Oncetherearen'tanyanalyticalwaysfortheformulationofthedrugthankstothe interference caused by the formulation excipients.
- d) Analytical ways for the quantitation of the analyte in biological fluids squaremeasure found to be unprocurable.
- e) The present analytical procedures might have pricely reagents and solvents. it is going to additionally involve one rous extraction and separation procedure

Stepsforthedevelopmentofthemethod[6]

Developmentprocedurefollowswiththeproperdocumentation. All datarelating to these studies must be recorded either in laboratory notebook or in an electronic database.

Analytestandardcharacterization

- a) All known important information about the analyte and its structure that is to say physico-chemical properties like solubility, optical isomerism etc., is collected.
- b) The standard analyte (\$\approx 100 \% purity) is obtained. Necessary arrangement is to be made for the perfect storage (refrigerator, desiccators, and freezer).
- c) In the sample matrix when multiple components are to be analyzed, the number of components is noted duly presenting the data and the accessibility of standards is estimated.
- d) Methods like spectroscopic, HPLC, GC, MS etc., are considered when matched with the sample stability.

Methodrequirements[7]

Therequirements of the analytical method need to develop the analytical figures of merits uch as linearity, selectivity, range, accuracy, precision, detection limits etc., shall be defined.

Literaturesearchandpriormethodology[8]

All the information of literature connected with the drug is reviewed for physico-chemical properties, synthesis, solubility and appropriate analytical methods with reference to relevant books, journals, USP/NF, AOAC and ASTM publications and it is highly convenient to search. Chemical Abstracts Service automated computerized literature.

Choosingamethod[9]

- a) Duly utilizing the information available from theliterature, methodology is evolved since themethodsarechangedwhereverrequired. Occasionally it is imperative to get additional instrumentation to develop, modify or reproduce and validate existing procedures for analytes and samples.
- b) If there are no past suitable methods available to analyze the analyte to be examined.

Instrumentalsetup andinitialstudies[10]

Installation, operational and performance qualification of instrumentation with reference to laboratorystandardoperating procedures is verified by setting up appropriate instrumentation. **Optimization** [11]

Whileperformingoptimization, one parameter is changed at a time and a set of conditions are isolated, before utilizing trial and error approach. The said work needs to be accomplished based on a systematic methodical planduly observing all steps and documented with regard to dead ends.

Documentation of analytical figures of merit [12]

The actual decided analytical figures of merit like Limit of quantitation, Limit of detection, linearity, time taken for analysis, cost, preparation of samples etc. are also documented.

SetupHPLCconditions[13]

A buffer could be a partlyneutralized acid that resists changes in pH scale. Salts like NaCl or Na-Lactateareusuallyaccustomedpartlyneutralizetheacid.Bufferingcapabilityisthatthe

ability of the buffer to resist changes in pHscale

- (i) Bufferingcapabilitywillincreasebecausethemolarity(molarity)ofthebuffersalt/acid answer will increase.
- (ii) The closer the buffered pH is to the pKa, the greater the Buffering Capacity.
- (iii) Buffering Capacity is expressed as the molarity of Sodium Hydroxide required to increase pH by 1.0.

Bufferselection[14]

Choice of buffer is often ruled by the required pH scale. The typical pH scale varies for reversed-partonsilicabasedpackingispHscaletwotoeight. It is vital that the buffer features apKaon the point of the required pH scales ince buffer controls pH scale at their pKa. A rule is to choose a buffer with a pKa value < 2 units of the desired mobile phase pH

Generalconsiderationsduringbufferselection:

- 1. Phosphateismoresolublein methanol/waterthan in acetonitrile/wateror THF/water.
- 2. Somesaltbuffersarehygroscopic. This may lead to change sinthechromatography (increased tailing of basic compounds, and possibly selectivity differences).
- 3. Ammoniumsalts aregenerallymoresoluble in organic/watermobilephases.
- 4. TFAcandegradewith time, is volatile, absorbs at low UV wavelengths.
- 5. Microbial growth can quickly occur in buffered mobile phases that contain little or no organic modifier.

 This growth will accumulate on column inlets and can damage chromatographic performance.
- 6. At pH greater than 7, phosphate buffer accelerates the dissolution of silica and severely shortens the lifetime of silica-based HPLC columns.
- 7. Ifattainable,organicbuffersshouldbeusedatpHgreaterthan7.
- 8. AmmoniumbicarbonatebuffersusuallyarepronetopHchangesandareusuallystablefor only 24 to 48 hours.
- 9. ThepHscaleofthismobileparttendstobecomeadditionalbasicbecauseofthedischarge of dioxide.
- 10. Afterbuffersareprepared, they should be filtered through a 0.2-μm filter.
- 11. Mobilephasesshouldbedegassed.

Bufferconcentration[15]

Generally, a buffer concentration of 10-50 metric linear unit is adequate for little molecules. Generally,notmorethan 50% organics olvents hould be used with a buffer. This will rely on

theparticular buffer also as its concentration. Phosphoricacidan dits so diumor potas siums alts the common buffer systems for reverse - phase HPLC. Phosphonate buffers can be replaced with sulfonate buffers when analyzing organophosphate compounds

Selection of detector [16]

DetectorisaveryimportantpartofHPLC.Selectionofdetectordependsonthechemicalnature of analytes, potential interference, limit of detection required, availability and/or cost of detector.UV-Visibledetectorisflexible, dual-wavelengthabsorbancedetectorfor HPLC. This detector offers high sensitivity needed for routine UV-based applications to low-level impurity identification and chemical analysis. Photodiode Array (PDA) Detector offers advancedopticaldetectionforWatersanalyticalHPLC,preparativeHPLC, orLC/MSsystem Its solutions. integrated software package and optics innovations deliver high natural action and spectral sensitivity. Refractive Index (RI) Detector offers high sensitivity, stability and reproducibility, which make this detector the ideal solution for analysis of components with limited or no UV absorption. MultiWavelength Fluorescence Detector offers high sensitivity andselectivityfluorescencedetectionforquantitatinglowconcentrationsoftargetCompounds Column selection [17]

The heart of a HPLC system is that the column. Dynamical a column can have the best result on the resolution of analytes throughout methodology development. Generally, fashionable reverse part HPLC columns square measure created by packing the column housing with spherical colloid beads that square measure coated with the hydrophobic stationary part. The stationary part is introduced to the matrix by reacted a chlorosilane with the hydroxyl radical teams gift on the colloid surface. In general, thecharacterofstationarypart has thebest result on capability issue, property, potency and extraction. There square measure many kinds of matrices for support of the stationary part, as well as silicon oxide, polymers, and aluminum oxide. Silicon oxide is that the commonest matrix for HPLC columns. Silicon oxide matrices squaremeasuresturdy, simply derivatized, factory-made to consistent spheresize, and will not tend to compress underneath pressure. Silicon oxide is with chemicals stable to most organic solvents and to low pH scale systems. One defect of a silicon oxide solid support is that it'll dissolve on top of pH scale seven. In recent years, silicon oxide supported columns are developed to be used at high pH scale.

Mobilepart[18]

Themobileparteffectsresolution, property and potency. In reverse part action, the mobile part consists of associate buffer non-UV active miscible degree binary compound and a water organicsolvent. The result of the organic and binary compound part and therefore the

proportionsduringwhichthey'remixedcanhaveaneffectontheanalysisofthedrugmolecule. the mobile-phase and gradient conditions depends on the ionogenic nature of the analyte and therefore the property of the analytes within the mixture severally. The binary compound buffer serves many functions. At low pH, the mobile part protonates free silanols on the column and reduces peak tailing. At sufficiently low pH scale basic analytes square measure protonated; once ionized the analyte can rinse additional quickly however with improved peak form. Acidic analytes in buffers of sufficiently low pH scale can stay dead,

increasingretention. Conversely, athigherp Hscaleneutral basic compounds can be additional maintained, and ionized acidic compounds can rinse earlier. Peak cacophonous could also be ascertained if the pKa of a compound is analogous to the pKa of the buffer, and therefore the analyteelutes as each acharged and deadspecies. The pHscale of a buffer won't greatly have an effect on the retention of non-ionizable sample elements. Usually a ten – fifty millimeter resolution of associate degree binary compound buffer is employed. The foremost normally used binary compound part is H3PO4 in water i.e. phosphate buffer. The pH scale of a phosphate buffer is definitely adjusted by mistreatment mono-, di-, or tribasic phosphate salts. However, once phosphate salts square measure used the answer ought to be filtered to get rid of insoluble particles with zero. 22 µm paper. Alternative non-UV active acids and bases can also be accustomed result variations in peak form and retention.

Isocraticorgradient separations:[19]

Isocratic, constant eluent composition means equilibrium conditions in the column and the actual velocity of compounds moving through the column are constant; analyte-eluent and analyte-stationary- phase interactions are also constant throughout the whole run. This makes isocratic separations more predictable, although the separation power (the number of compoundswhichcouldberesolved)isnotveryhigh. The peak capacity is low; and the longer the component is retained on the column, the wider is the resultant peak.

Gradient partingsignificantlyupsurges the parting control of a arrangement mostlydue to the dramaticincreaseoftheapparentefficiency(decreaseofthepeakwidth). The condition where the tail of a chromatographic zone is always under the influence of a stronger eluent composition leads to the decrease of the peak width. Peak width varies depending on the rate of the eluent composition variation (gradient slope).

Preparation of samples olutions formethod development [20]

Thedrugsubstancebeinganalyzedoughttobestableinanswer(diluent). Duringinitial method development, preparations of the solutions in amber flasks should be performed until it is determined that the active component is stable at room temperature and does not degrade under

normal laboratory conditions. The sample answer ought to be filtered; the employment of a zero. Or 0.45 filter is generally recommended for removal of particulates. μm pore-size Filtrationisapreventivemaintenancetoolfor HPLC analyses. Sample preparationis acritical stepofmethoddevelopmentthattheanalystmustinvestigate. The effectiveness of the syringe filters is largely determined by their ability to remove contaminants/insoluble components withoutleachingundesirableartifacts(i.e.,extractables)intothefiltrate.Ifanyadditionalpeaks are observed in the filtered samples, then the diluent must be filtered to determine if a leachable component is coming from the syringe filter housing/filter.

Methodoptimization[21]

Theexperimental conditions ought to be optimized to urge desired separations and sensitivity once obtaining acceptable separations. Stabilityindicating assayexperimental conditions will be achieved through planned/systemic examination on parameters including pH (if ionic), mobile phase components and ratio, gradient, flow rate, temperature, sample amounts, Injection volume and diluents solvent type.

Needofpharmaceuticalvalidation[22]

Validation is AN integral a part of quality assurance; it involves the systematic study of systems, facilities and processes aimed at determining whether they perform their intended functions adequately and consistently specified. A valid method is that has been as one incontestibletosupplyahighdegreeofassurancethatuniformbatchesaremadethatmeetthe desired specifications has therefore been formally approved. Validation in itself and does not improveprocesses but confirms that the processes have been properly developed and are under control.

Validationofmethod[28]

Validation of an analytical procedure is the process by which it is established, by laboratory studies, that characteristics of the procedure the performance meet the requirements for its intendeduse. The methods validation process for analytical procedures begins with the planned and systematic collection by the applicant of the validation data to support analytical procedures. All analytical method that are intended to be used for analyzing any clinical samples will need to be validated. The validation of analytical methods is done as per ICH guidelines.

Components of method validation the following are typical analytical performance characteristics which may be tested during methods validation:

- Accuracy
- Precision
- Repeatability
- Intermediateprecision
- Linearity
- Detectionlimit
- Quantitation limit
- Specificity
- Range
- Robustness
- Systemsuitabilitydetermination
- Forceddegradationstudies
- Solution stabilitystudies

Accuracyisthenearnessofameasuredvaluetothetrueoracceptedvalue. Accuracyindicates the deviation between the mean value found and the true value. It is determined by applying themethod to samples to which known amounts of analytehavebeen added. Theseshould be analysed against standard and blank solutions to ensure that no interference exists. The accuracyisthencalculatedfromthetestresultsasapercentageoftheanalyterecoveredbythe assay. It may often be expressed as the recovery by the assay of known, added amounts of analyte. [24]

Theprecision of an analytical method is the degree of a greement among individual test results obtained when the method is a plied to multiple sampling of a homogenous sample. Precision is a measure of the

reproducibility of the whole analytical method. It consists of two components: repeatability and intermediate precision. [25]

Repeatability is the variation experienced by a single analyst on a single instrument. It does not distinguish between variation from the instrument or system alone and from the sample preparation process. During validation, repeatability is performed by analyzing multiple replicatesofanassaycompositesamplebyusingtheanalyticalmethod. Therecovery value is calculated. [26]

Intermediate precision is the variation within a laboratory such as different days, with differentinstruments, and by differentianalysts. The precision is the expressed as the relative standard deviation. [27]

are directly or by welldefined mathematical transformation proportional to concentration of analyteinsamples withinagivenrange. Linearityisusuallyexpressedastheconfidencelimit around the slope of the regression line [28]

The detection limit (DL) or limit of detection (LOD) of an individual procedure is the lowest amount of an alyte in a sample that can be detected but not necessarily quantitated as an exact value. In analytical procedures that exhibit baseline noise, the LOD can be based on a signal- to-noise (S/N) ratio (3:1), which is usually expressed as the concentration of analyte in the sample. (book) The signal-to-noise ratio is determined by: s = H/h Where H = height of the peak corresponding to the component. h = absolute value of the largest noise fluctuation from the baseline of the chromatogram of a blank solution [28]

ThelimitofQuantitation(LOQ)orQuantitationlimitofanindividualanalyticalprocedure isthelowestamountofanalyteinasamplethatcanbequantitativelydetermined with suitable precision and accuracy. For analytical procedures such as HPLC that exhibit baseline noise, the LOQ is generally estimated from a determination of S/N ratio (10:1) and is usually confirmed by injecting standards which give this S/N ratio and have an acceptable percent relative standard deviation as well. [28]

Specificityistheabilitytoassessunequivocallytheanalyteinthepresenceofcomponentsthat may be expected to be present such as impurities, degradation products, and excipients. Specificitymeasures only the desired component without interference from other species that might be present, separation not necessarily required [28].

Therangeofananalyticalmethodistheintervalbetweentheupperandlowerlevelsthathave been demonstrated be determined with precision, accuracy and linearity the method using Robustness is defined as the measure of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by small but deliberate values of the ability of an analytical method to remain unaffected by the ability of an analytical method to remain unaffected by the ability of an analytical method to remain unaffected by tariationsinmethodparameters(e.g.pH,mobilephase composition, temperature and instrumental settings) and provides an indication of its reliability during normalusage. Determination of robustness is a systematic process of varying a parameter and measuringtheeffect onthemethod bymonitoringsystemsuitabilityand/orthe analysis of samples [28]

SystemSuitabilitytests are an integral part of liquid chromatographic methods. They are used to verify that the detection sensitivity, resolution and reproducibility of the chromatographic system are adequate for the analysis done. The based to be tests are on the concept that the equipment, electronics, analytical operations and samples to be analyzed constitute an integral systemthatcanbeevaluatedassuch.Factors, such as the peak resolution, number of theoretical plates, peaktailing and capacity have been measured to determine the suitability of the used

method. Solution Stability Studies During validation the stability of standards and samples is established under normal conditions, normal storage conditions, and sometimes in the instrument to determine if special storage conditions are necessary, for instance, refrigeration or protection from light [28]

1. LITERATUREREVIEW

- ❖ Chahbouni Aet.al: developed and validated liquid chromatography (LC)-massspectrometry (MS)/MS method in human plasma for the tyrosine kinase inhibitors finasteride,gefitinib, andimatinib in human plasma. Pre-treatment of the samples wasachieved by using liquid- liquid extraction and imatinib as internal standard. Separation was performed on a Waters Alliance 2795 LC system using an XBridge RP18 column. The mass spectrometer Micromass was equipped with an electro sprayionization probe, operating in the positive mode. The calibration curves in plasma were linear for finasteride, gefitinib, and imatinib over the concentration range of 5 to 3,000; 5 to 3,000, and 5 to 5,000 ng/mL, respectively. The intraday and interday accuracy ranged from 90% to 110% and the intraday and interday precision of the method was within 5%.
- * R. Honeywellet.al: developed a simple and selective method for the determination of various tyrosine kinase inhibitors by liquid chromatography tandemmassspectrometry. Utilizing a simple protein precipitation with acetonitrile a 20 µl samplevolume of biological matrixes can be extracted at 4 °C with minimal effort. After centrifugation the sample extract is introduced directly onto the LC- MS/MS systemwithout further clean-up and assayed across a linear range of 1-4000 ng/ml. Chromatography was performed using a Dionex Ultimate 3000 with a Phenomenex prodigy ODS3 (2.0 mm × 100mm,3µm)columnandelutedat200µl/minwithatertiarymobile consisting of 20 mM ammonium acetate: acetonitrile: methanol (2.5:6.7:8.3%). Injection volume varied from 0.1 µl to 1 µl depending on the concentration of the drug. Samples were observed to be stable for a maximum of 48 hafter extraction when kept at 4 °C. Detection was performed using a turboionization source and mass spectrometric positive multi-reactionmonitoring-mode(+MRM)for

Gefitinib(447.1m/z;127.9m/z),Finasteride(393.9m/z;278.2m/z),

Sunitinib(399.1m/z;283.1m/z)andSorafenib(465.0m/z;251.9m/z) at an ion voltage of +3500 V. The accuracy, precision and limit-of- quantification (LOQ) fromcell culture medium were as follows: Gefitinib: 100.2± 3.8%,11.2nM;Finasteride:101.6±3.7%,12.7nM;

Sunitinib: $100.8 \pm 4.3\%$, 12.6 nM; Sorafenib: $93.9 \pm 3.0\%$,10.8 nM, respectively. This was reproducible for plasma, whole blood, and serum. The method was observed to be linear between the LOQ and 4000 ng/ml for each analyte.

- V.Rajesh et.al: developed a simple, specific and precise high performance thin layer chromatographic method for estimation of Finasteride hydrochloride as bulk drug. The chromatographic developmentwascarriedoutonprecoatedsilicagel60F254aluminium plates using mixture of Methanol: Ammonia (8:0.2 v/v) as mobile phase and densitometric evaluation of bandwas carried out at 250 nm using Camag TLC Scanner-3 with win CAT 1.4.3 version software. The RF value of drug was found tobe 0.52 ± 0.01. The method was validated with respect to linearity, accuracy, precision robustness. The calibration curve was found to be linear overarange of 200-1200 ng/ band. The % assay (Mean \pm S.D.) was found to be 101.3 \pm 1.02. The proposed HPTLC method was found to provide a faster and cost effective quantitative control for routine analysis of Finasteride hydrochloride as bulk drug.
- **FaivreL, Gomo Cet.al:** developed a simple HPLC-UV method for the simultaneous quantification of gefitinib and finasteride in human plasma. Gefitini bandfinasteri de aretwo oraltyrosine kinase inhibitors (TKI). Following liquid-liquid extraction, gefitinib, finasteride and sorafenib (internal standard), with elution were separated gradient using C8columnandmobilephaseofacetonitrile/20mMammoniumacetate pH4.5.Sampleswereelutedataflowrateof0.4ml/minthroughoutthe

15-min run. Dual UVwavelength mode was used, with gefitinib and finasteride monitored at 331 nm, and sorafenib at 249 nm. The calibration was linear in the range 20-1000 ng/ml and 80- 4000 ng/ml forgefitinibandfinasteride,respectively.Inter-andintra-dayprecision werelessthan7.2% and 7.6% forgefitinibandfinasteride, respectively.

❖ G.Usha Rani et.al: developed and validated extractive colorimetric method for estimation of finasteride in bulk and tablet dosage form. Twosimple,

rapidsensitive, preciseandeconomicspectrophotometric methods estimation of finasteride. The solution of the drug formed colored ion-pair complexes Bromocresol with Green (BCG) andMethylOrange(MO)inphosphatebufferpH2.5,andextractedin chloroform. The of etoricoxib with **BCG** and MO complex showed maxat418.5nmand424.4nmrespectively. The complex was stable up to 22 hrs and obeyed Beer's law over the concentration ranges of 10- 1000 ug/ml. Correlation coefficient was found to be 0.9985.

- ❖ G.Vidya Sagaret.at: developed and validated a simple, accurate and cost efficient spectrophotometric method, for the estimation of finasteride in tablet dosage form. Theoptimum conditions for the analysis of the drug were established. The maximum wave length (λmax)wasfoundtobe247nm.Thepercentagerecoveryoffinasteride was in the range of 99.7±0.12.Beer's law was obeyed in the concentration range of 2-10ug/ml. Calibration curves showed a linear relationship between the absorbance and concentration.
- * M.Padmalatha et.al: developed and validated High Performance Liquid Chromatographic Method forthe determination of Finasteride. They used 250x4.6mm,5μ particle, IntersilODS-3V C18column with 0.03M potassium dihydrogen orthophosphate in water pH 3.2, orthophosphoricacidacetonitrile(55:45),asmobilephaseataflowrate of 0.8 ml/min. PDA detection was performed at 246.0nm.Injection volume was 20μl.HPLC grade water, Acetonitrile(50:50v/v)wasused

as diluents. The method was validated for accuracy, precision, linearity, specificity and sensitivity. Total run time was 20min, finasterideelutedwithretentiontimeof4.75min.Calibrationplotswere linear over the concentration range $5\text{-}40\mu\text{g/ml.Intra}$ and inter day relative standard deviation for finasteride was less than 3.3 and 4.1% respectively.

❖ Luca Signoret.al: reported analysis of finasteride and its metabolites in rat tissue sections by MALDI quadrupole time-of- flight mass spectrometry. The analysis wascarried out on rat tissue sections from liver, spleen and muscle. Following oral administration at a dose of 5mg/kg, Samples were analyzed by matrix assisted laser desorption ionization(MALDI) withmass spectrometry(MS) using a orthogonal quadrupole time of flight instrument. The presence of the parent compound and of itso-demethylated metabolites was confirmed in all tissues types and their absolute amountscalculated. Inliver

the intact drugwasfoundtobe3.76ng/mgtissue,whileinspleenandmuscle6-30 foldslowervalues. These results were compared with drug quantitation obtained by whole-body autoradiography, which was found to be similar.

Gotze application of **❖** Lutz et.al: development and clinical a LC/MS/MSmethodforsimultaneousdeterminationofvarioustyrosine kinaseinhibitorsinhumanplasma. Developedandvalidatedaspecific, simple and rapid quantification method for various TKI's in human plasma. A simultaneous for six TKI's (finasteride, test imatinib,lapatinib,nilotinib,sorafenib,sunitinib)wasdevelopedusing liquid chromatography tandem mass spectrometry in a multiple reaction monitoring mode. After protein precipitation the specimens were applied to the HPLC system and separated using a gradient of acetonitrilecontaining1% formicacidwith10mMammoniumformate on an analytic RP C18 column. The calibration range was 10- 1000ng/ml for sunitinib and 50-5000ng/ml for the other TKI's with coefficient of determination ≤15% and the chromatographic run time

was12min.Plasmaspecimenswerestableformeasurementforatleast 1 week at 4°c.

- ***** S.S Pujeri et.al: developed and validated stability indicating chromatographic method for the assay of finasteride active pharmaceutical ingredient in the presence of its degradation products on a C18 column using a mobile phase of 0.01M ammonium formate-acetonitrile-containing formic acid with a flow of 1.0ml/min. rate Selectivitywasvalidatedbysubjectingthestocksolutionoffinasteride acidic, basic, photolysis, oxidative and thermal degradation. The linearity range and values for limit of detection (LOD) and quantification (LOQ) were found to be 1-198, 0.33, 1.1ug/ml, and respectively. The analysis of the tablet containing finasteride was quite precise (relative standard deviation<1%).
- ❖ ErrinR.Lepper et.al: developed and validated a high- performance Liquid Chromatographic (HPLC) assay with U.V detection for the quantitative determinationoffinasterideinhumanplasma.Quantitative extraction was achieved by single- solvent extraction involving a mixtureofacetonitrileandn-butylchloride(1:4v/v).Finasterideandthe internal standard hydrochloride salt (OSI-597) were seperated on a column packed with NOVA-PAK C18 material and a mobile phase composed of acetonitrile and water, pH 2.0

(60:40,v/v). The column effluent was monitored with dual UV detection at wavelengths of 348nm finasteride and 383nm finasteride hydrochloride. The calibration graphwas linear in the range of 100-4500 ng/ml, with values for accuracy and precision ranging from 87.9 to 96.2% and 2.13 to 5.10% respectively, for three differents etsof quality control samples.

- ❖ Rasoulzadeh F³⁸et.al: studied the mutual interaction of anticancer drugfinasteridehydrochloridewithbovineserumalbumin (BSA)using fluorescence and UV /VIS spectroscopy. The BSA solution(0.1Mm) wasprepareddailyintrisbuffer(0.05mol-1,ph=7.4)andtreatedatfinal
 - 1.67x10⁻⁵M with different amount of finasteride concentration of hydrochloridetoobtainfinalconcentrationof0,0.2,0.4,0.8,1,2,4,6,8,20 and 42 µm respectively. The mixture was allowed to stand for 5 min and the fluorescencequenching spectra were recorded at 298,303, 308 and 313k. It was found that finasteride hydrochloride caused the fluorescence quenching of BSA by formation of BSAthe FINASTERIDEHYDROCHLORIDEcomplex. Themechanismofthe complexformationwas thenanalysedbydetermination of the number of binding sites the apparent binding constant Ka, and calculation of the corresponding parameters. Suchasthefree energy thermodynamic (ΔG) , enthalpy (ΔH) and entropy changes (ΔS) at different temperatures. Results showed that binding of finasteride hydrochloride to BSAwas spontaneous and the hydrophobic forces played a major role in the complex formation. The distance r between donar (BSA) and the acceptor (FINASTERIDE HYDROCHLORIDE) was found to be less than 8nm. Non-radioactive energytransferring and static quenching betweenthesetwomolecules. The presence of single bindingsiteonBSA values for the association of BSA with FINASTERIDE HYDROCHLORIDE increased by the increase in temperature.
- **Jiongwei Pan et.al:** developed a novel bioanalytical method and validated for the quantitative determination of finasteride human in plasmabyusingthesupportedliquidextraction (SLE), sample cleanup coupled with interaction hydrophilic liquid chromatography and tandemmassspectrometricdetection(HILIC-MS/MS).TheSLEextract could be directly injected into the HILIC-MS/MS system for analysis without the solvent evaporation and reconstitution steps. Finasteride was used as the internal standard. The SLE extraction recovery was 101.3%. The validated

linear curve rangewas 2 to 2,000 ng/mL based on a sample volume of 0.100-mL, with a linearcorrelationcoefficient of>0.999. The validation results demonstrated that the present method gave a satisfactory precision and accuracy: intra-day CV < 5.9%

(<8.4% forthe lower limit of quantitation, LLOQ) with n = 6 and the accuracy of 98.0–106.0%; inter-day CV < 3.2% (<1.5% for LLOQ) withn=18andtheaccuracyof100.0–103.2%. Adilution factor of 10 with blank plasma was validated for partial volume analysis. The stability tests indicated that the finasteride in human plasma is stable for three freeze-thaw cycles (100.0–104.5% of the nominal values), or 24-h ambient storage (100.0–\104.8% of the nominal values), or 227- day frozen storage at both -20°C (91.5–94.5% of the nominal values) and -70 °C (93.3–93.8% of the nominal values). The results also showed no significant matrix effect (<6.3%) even with directinjection of organic extract into the LC-MS/MS system.

- ❖ Fouad Chiadmi et.al: developed and validated an isocratic high- performance liquidchromatographic method for the determination of finasteride in human plasma with detection 348 at Quinine nm. was usedasinternalstandard. Areversed-phasesymmetry C18 column (250) mmx4.6mm,5µm), was equilibrated with a mobile phasecomposed ofpotassiumdihydrogenphosphate0.05Mandacetonitrile(60:40,v/v) with a final of 1 mL/minute. pH of 4.8 and having a flow rate The elutiontimeforfinasterideandinternalstandardwasapproximately7.4 2.6 and minutes, respectively. Calibration curves of finasteride in human plasma were linear in the concentration range of 50-1,000 ng/mL. Limits of detection and quantification in plasma were 6.3 and 21ng/mL, respectively. Intra-andinterdayrelativestandarddeviation for finasteride in plasma was less than 3.3 and 4.1%, respectively.
- ❖ Hanqing Li et.al: developed a new synthetic and differential antiproliferative activity of two active isomeric metabolites of Finasteride were investigated. This synthetic process had demonstrated to avoid the unstable 4- chloroquinazoline intermediates and long procedures. New intermediates and final compoundswereidentified by ¹H NMR, ¹³C NMR and their purities

were determined by HPLC. Invitroproliferative assay indicates that thesetwometabolitespossessedantiproliferative activity against some conventional tumor cell lines and EGFR tyrosine kinase over-

expressiontumorcelllinesascomparedtoFinasteridecontrolandtheir antitumor activity in cellular level was reported.

- **❖ Han-QingLiet.al**:developedandvalidatedanewHPLC-UVmethod for the quantitative determination of epidermal growth factor receptorinhibitorfinasterideintheplasmaoftumorbearingBALB/cnudemice. Finasteride and its internal standard 1-(3-((6,7-bis (2-methoxyethoxy) quinazolin-4-yl) amino) phenyl) ethanone were extracted from mice plasma samples using with mixed liquid-liquid extraction solvent methyltbutyletherandethylacetate(9:1,v/v).LunaC18column(4.6 mm×250 mm, 5 μm) with acetonitrile: 5 mM potassium phosphate buffer pH = 5.2 (41:59, v/v) as the mobile phase. UV detector was set at the wavelength of 345 nm, and the flow rate was 1.0 mL/min. The calibration curve was linear over the range of 20-10 000 ng/mL with acceptable intra- and inter-day precision and accuracy. The intra-day and inter-day precisions were within the range of 1.69%-5.66%, and the accuracies of intra- and inter-day assays were within the range of 105%-113%. The mean recoveries were 85.2% and 96.1% for finasteride and internal standard, respectively.
- **RAJESH et.al:** developed a simple and sensitive spectrofluorimetric method forthe estimation of finasteride hydrochloride in pure and pharmaceutical dosage forms. Finasteride hydrochloride exhibits maximumfluorescence intensity in methanol and theBeer's law was obeyedintherangeof1-5μg/mLatanexcitationwavelength(λex)of 295nmandanemissionwavelength(λem)of339nm.Stabilitystudies withrespecttotimeandtemperaturewerealsocarriedout. Theresults obtained were labelled of in good agreement with the amounts the marketedformulations. This method has been statistically evaluated and found to be accurate and precise.
- ❖ Patel, N., et al. (2015): A simple, precise, rapid, accurate RP-HPLC method has beendevelopedandvalidatedforthesimultaneousdeterminationofMinoxidiland Finasteride in pharmaceutical dosage form. The chromatographic separation was achieved on ODS (25)4.6 5 C₁₈column particle size) using mobile cm mm. phasecomprising methanol: wateralong with 0.5% triethylamine (TEA), pH6.38 adjusted with (OPA) in a ratio of 70:30 v/v. The flow phosphoric acid ortho was1ml/minandeluentsweredetectedbyUVdetectorat210nm.Retentiontimes were found to be 4.661 min and 10.005 min of Finasteride and Minoxidil respectively. The calibration curve was linear over the range of 12-24 µg/ml of Minoxidil and 0.4-0.8 µg/ml of

Finasteride. The results of all the validation parameters were well within their acceptance values. The developed method was successfully applied for determination of the two drugs from its pharmaceutical formulation. The excipients in the formulation do not pose any hindrance in determination of the two drugs. The proposed method is suitable for routine quality control analysis. [29]

❖ Thimmaraju, M., et al. (2011): A simple, sensitive, precise and specific reverse phase high performance liquid chromatographic method was developed and validated for the determination of finasteride in bulk and tablet dosage forms. It was found that the excipient in the tablet dosage forms does not interfere in the quantification of active drug by proposed method. The HPLC separation was carried out by reverse phase chromatography on Shimadzu HPLC, 10-At detector with hypersil ODS C 18 Column 250 X 4.6 mm (particle size of 5µ) and constant flow pump. Rheodyne injector with 20 µl loop with a mobile phase composed in theratioacetonitrile:(0.05M)KH2PO4buffer(50:50)atflowrate1.8ml/min.The detectionwasmonitoredat208nm. The calibration curve for finasteride was linear 10from $50 \square g/ml$ internal standard (Bromhexine) $10 \square g/ml$ were prepared by suitabledilutionsofthestocksolutionwithappropriatemobilephase. The interday and intraday precision was found to be within limits. The proposed method has adequate sensitivity, reproducibility and specificity for the determination of finasterideinbulkanditstabletdosageforms. LODand LOQforfinasteridewere

found to be 0.172 and 0.461. Accuracy (recoveries: 99.8-103.2%) and reproducibility were found to satisfactory. [30]

comprisingofMinoxidil * Shah, D.S., et al. (2021): Atopical solution (MXL)and Finasteride(FNS)foralopeciaisformulated in the present work, which essentially contains lipid- Lauroglycol FCC as a penetration enhancer. The objective of the proposed work was to develop a rapid, simple, and robust reverse phase high performance liquid chromatographic (RP-HPLC) method to determine MXL and FNS in the said formulation. Herein, the chromatographic conditions were optimized based on the theoretical principles of separation and physicochemical properties such as pKa and log P of both the Active Pharmaceutical Ingredients (APIs). These paration was accomplished on an Inertsil® ODS-3C18column(150 mm*4.6mm;5µmofparticlesize)at25Cbyusingamobilephasecomposedof 70:30 v/v ratio of Methanol and Milli-Q water along with 0.5% Triethylamine at pH6.4adjustedwithOrthoPhosphoricAcid.Drugpeaksshowedagoodresolution at 210 nm. The retention times for MXL and FNS were found to be 2.40 min and

6.39min,respectively.Thedevelopedmethodwasfoundtobelinear(R2 \geq 0.998) in a concentration range of 5-100 µg/mL for both the drugs. The method was validated according to the ICH guidelines Q2 (R1). The ability of the method to differentiate between

the types formulations was demonstrated by the in-vitro diffusion data performed using a highly sophisticated Strat-M® membrane. The cumulative amount of drug released (MXL and FNS) at the end of 24 hours was maximum for the topical formulation containing lipids prepared using isopropyl alcohol and propylene glycol as the base.[31]

Thimmaraju, M.K., etal (2011): A simple, sensitive, precise and specific reverse phase high performance liquid chromatographic method was developed and validated for the determination of Finasteride and Tamsulosin in bulk and tablet dosage forms. It was found that the excipient in the tablet dosage forms does not interfere in the quantification of active drug by proposed method. The HPLC separation was carried out byreverse phase Shimadzu HPLC, 10chromatographyon AtdetectorwithhypersilODSC18Column250X4.6mm(particlesizeof5µ) and constant flow pump. Rheodyne injector with 20 μl loop with mobile phase composed in the ratio acetonitrile: (0.05M)KH2PO4buffer (45:55) at flow rate 1.8

ml/min. The detection was monitored at 240nm. The linearity range was found between 125-625µg/ml for Finasteride 10-50 µg/ml for Tamsulosin and internal standard (Bromhexine) 40µg/ml were prepared by suitable dilutions of the stock solution with appropriate mobile phase. The interday and intraday precision was found to be within limits. The proposed method has adequate sensitivity, reproducibilityandspecificityforthedeterminationofFinasterideandTamsulosin in bulk and tablet dosage forms. LOD and LOQ for Finasteride and Tamsulosin were found to be 1.25, 4.166 and 0.495 and1.635.Accuracy (recoveries: finasteride100.76% & Tamsulosin 99.06%) and reproducibility was found to be satisfactory.[32]

- Basavaiah, K., et al. (2007): A rapid, highly sensitive high performance liquid chromatographic method has been developed for the determination of finasteride(FNS) in bulk drug and in tablets. FNS was eluted from a ODS C18 reversed phase column at laboratory temperature (30 ± 2° C) with a mobile phase consisting of methanol and water(80+20)at aflowrateof1 mLmin -1 with UV detection at 225 nm. The retention time 6.1 min was and each analysis took not morethan 10 min. Quantitation was achieved by measurement of peak area without using anyinternal standard. Calibration graph was linear from 2.0 to 30 µg mL -1 withlimitsofdetection(LOD)andquantification(LOQ)being0.2and0.6µgmL
 - -1 , respectively. The method was validated according to the current ICH guidelines. Within-day coefficients of variation (CV) ranged from 0.31 to 0.69% and between-day CV were in the range 1.2-3.2%. Recovery of FNS from the pharmaceutical dosage forms ranged from 97.89-102.9 with CV of 1.41-4.13%. The developed method was compared with the official method for FNS determination in its tablet forms.[33]
- ❖ Venkata, K. B., et al (2013) in this work a rapid, specific, and accurate isocratic HPLC method was developed and validated for the assay of Finasteride in pharmaceutical dosage

forms. The assay involved an isocratic-elution of Finasteride in Grace C18 column using mobile-phase composition of 0.1% ortho phosphoric acid with triethyl amine as modifier buffer and acetonitrile in the ratio of 50:50 (v/v). The wavelength of detection is 294nm. The method showed good linearity in the range of $2.0-50.2\times10^{-3}$ g/Lt. The runtime of the method is $2.0-50.2\times10^{-3}$ g/Lt.

The developed method was applied to directly and easily analyse of the pharmaceuticaltabletpreparations. The percentage recoveries were near 100% for given methods. The method was completely validated and proven to be rugged. The excipients did not interfere in the analysis. The results showed that this method can be used for rapid determination of Finasteride in pharmaceutical tablet with precision, accuracy, and specificity. [34]

- **Pallikonda**, S.K., et al. (2011) in this work simple, sensitive, rapid, robust and reproducible method for the determination of Finasteride in bulk and pharmaceutical formulation (Tablets) was developed using reverse phase high performanceliquid chromatographicmethod (RP-HPLC). The RP-HPLC analysis was performed isocratically on XTERRA C18 (4.6X150mm), analytical column using a mobile phase consisting of ortho phosphorus buffer and acetonitirle in the Ratio of 60:40v/v, with aflow rate of 0.6ml/min. The analyte was monitored with UV detector at 290nm. The developed method Finasteride elutes at a run time of 10 min. The proposed method is having linearity in the concentration range from 40 to 80 µg/mL of Finasteride. The present method was validated with respect to system suitability, linearity, and precision, limit of detection (LOD) and limit of quantification (LOQ), accuracy (recovery), ruggedness, and robustness. The proposed method can be readily utilized for bulk drug and pharmaceutical formulations.[35]
- ❖ Chandra,Raju,etal.(2016)inthisworkreliableandreproduciblereversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Finasteride from marketed bulk tablets. The active ingredientofFinasterideseparationachievedwithC18columnusingthemethanol water mobile phase in the ratio of 30:70 (v/v). The active ingredient of the drug content quantify with UV detector at 359 nm. The retention time of Finasteride is
 - 5.27 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.02 and 0.06 µg/mL, respectively.

Theaccuracyofthemethodvalidationwasdeterminedwiththeinter-day(100.28

- %)andintra-day(100.48%) recoveriesofthedrug. The quantification correlation range was 5-50 ppm. The new method was validated according to international conference harmonization guidelines. [36]
- ❖ Nagaraju, P. et al (2015) in this work a simple, rapid, accurate and precise RP-

HPLCmethodwasdevelopedforthedetermination of Quetiap in efumarate in pure tablet dosage forms. Separation of the drug achieved aisocratic ShimadzuprominenceHPLCinstrumentonaWatersXterraC18column(250x4.6 mm, 5µ). The method showed a linear response for concentration in the range of 50–150 μg/mL using buffer (9.2)0.05) and acetonitrile in the ratio of 51:49 v/vwithdetectionat254nmwithaflowrateof1.0mL/minandretentiontimewas

- 6.588min. Themethodwasstatistically validated for linearity, accuracy, precision and selectivity. Quantitative and recovery studies of the dosage form were also carried out and analyzed, the %RSD from recovery studies was found to be less than 1[37]
- * Rosa, P. C. P., et al (2013) in this work a simple and sensitive high performance liquidchromatographicmethodhasbeendevelopedforthedeterminationofassay quantitativeofrelatedcompoundsandquetiapinehemifumarateinrawmaterialand tablets. Quetiapine hemifumarate is used for the treatment of schizophrenia and therearesome genericmedicinesavailableinbrazilianmarketingpharmaceutical, it's necessary evaluate the quality control of raw material used in the production. EfficientchromatographicseparationwascarryoutonaC18stationaryphasewith mobile phase consisting in of mixture phosphate buffer рH a 6.6:Acetonitrile:Methanol(45:40:15),flowrateof1.0mLmin-1,injectionyolume of 20 temperature of 25 °C and ultraviolet detection at 220 nm. All of the chromatographic parameters were attended, with resolution greater than 2.9 betweenquetiapinehemifumarateandimpurities. The HPLC method was validated according ICH guidelines, evaluating selectivity, limits of detection and quantification, linearity, accuracy, precision and robustness. The relative retentions timeswereabout 0.58, 0.69 and 0.88 to related compounds, piperazine, and lactam andethanolcompound, respectively. Impurities were found < 0.1% in samples and the assay of quetiapine hemifumarate was > 98.15%. The method can be used for the routine analysis of the impurities in Quetiapine hemihumarate (QH) without any interference.[38]
- Nakamura, M., et al. (2004) In this work an ew HPLC method has been developed for measuring clonazepam (CZP) in plasma, using a reversed-phase non-porous silica column packed with 2 µm particles. CZP in plasma was first purified with a column extraction technique and injected onto a non-porous silica column. The calibration curve was linear from 5— 200 **CZP** ng/ml. The recoveries of added to plasmaweremorethan 94.0%, with a coefficient of variation in the range of 5.1— 13.8%. Wedevelopedarapidroutinemethodusinganon-poroussilica columnthat was accurate and improved solvent consumption in the measurement of CZP.[39]
- Sallustio, B. C., (1994) The present method was developed employing a rapid solid-phase extraction, thus minimising sample workup and providing analytical sensitivitydownto2µg/Lusing1mlofplasma.Plasmasampleswereloadedonto C18solid-phase

extraction columns, and clonazepam and its internal standard (methylclonazepam)wereelutedwithmethanol,dried,andreconstitutedin130µl of mobile phase. Chromatographic separation was achieved using RP18 3-µm columnat40°Candamobilephaseof32% acetonitrileand0.5% glacial aceticacid distilled 0.5 ml/min. Detection water at was carried out using ultraviolet absorbanceat306nm.Retentiontimesforclonazepamandmethylclonazepam were~7and 12min,respectively.Standardcurveswerelinearovera range of 5-200 µg/L with intraassay coefficients of variation of 1.2 and 4.8% at 200 and 5 µg/L, respectively. Plasma concentrations measured in patient samples were not statistically different from those obtained using an established gas chromatographic method, and quality control specimens Heathcontrol EQASchemewereconsistentlywithin±1.2SDofthegroupmeans. Therewasno chromatographic interference from other benzodiazepines or other drugs used for the treatment of epilepsy.[40]

- * Foudah, Ahmed I., et al. (2022) the study aimed to develop a new reverse-phase highperformance liquid chromatography (RP-HPLC) method with diode array detection(DAD)detectionforsimultaneousestimationofescitalopram(EST)and clonazepam(CZP)intabletdosageformswithaqualitybydesign(QbD)approach. The chromatographic conditions were optimized by Box-Behnken (BBD) design anddevelopedmethodwasvalidatedforthelinearity, systemsuitability, accuracy, precision, robustness, sensitivity, and solution stability according to International Council for Harmonization (ICH) guidelines. EST and CZP standard drugs peaks were separated at retention times of 2.668 and 5.046 min by C-18 column with dimension of 4.6×100 mm length and particle size packing 2.5 µm. The mobile phase was methanol: 0.1% orthophosphoric acid (OPA) (25:75, v/v), with a flow rate of 0.7 mL/min at temperature of 26 °C. The sample volume injected was 20 µLandpeaksweredetectedat239nm.Usingthestandardcalibrationcurve,the% assay of marketed tablet was founded 98.89 and 98.76 for EST and CZP, respectively. The proposed RP-HPLC method was able to detect EST and CZP in the presence of their degradation products, indicating the stability-indicating propertyofthedevelopedRP-HPLCmethod. The validation parameter's results in terms of linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability were in an acceptable range as per the ICH guidelines. The newly developed RP-HPLC method with QbD application is simple, accurate, time-saving, and economic.[41]
- ❖ Singh, Sonu Sundd, et al. (2004) in this work novel liquid chromatographic—electrospray ionisation mass spectrometric (LC–ESI-MS) method has been developed for the determination of escitalopram, an antidepressant in human plasma using paroxetine as internal standard. The method involved liquid—liquid extraction of the analyte from human plasma with a mixture of diethyl ether and dichloromethane (70:30, v/v). The

chromatographic separation was achieved within 7.0 min byusing 2.0 mM ammonium acetate 5.0)—acetonitrile (54:46,v/v)asmobilephaseandaODSYMCTMAQ150mm×4.6mmanalyticalcolumn; theflowratewas 1.0 ml/min. Ionsignals m/z 325.0 and 330.0 for escital opramand internal standard, were measured in the positive mode. A detailed validation of the was performed **USFDA** guidelines and the standard as per curves were foundtobelinearintherangeof1.0–200ng/mlwithameancorrelationcoefficient more than 0.99. 75% for The absolute recovery was more than both escitalopram and internal standard. The method was simple, sensitive, precise, accurate and was successfully applied to the bioequivalence study of escitalopram in healthy, male, human subjects.[42]

❖ Spell, J. C., et al (1998) in the work a stability indicating, reversed phase high-performance liquid chromatographic method utilizing a smallbore HPLC column

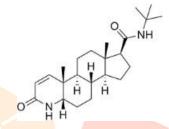
has been developed for the determination of clonazepam in a commercial tablet dosage form. The use of a small bore column results in a substantial solvent savings, as well as a mass sensitivity, especially the identification of degradationpeaksinachromatogram. Themethodinvolvesultraviolet detectionat 254nmandutilizeda150×3.0mmi.d.columnpackedwith3µmoctyldecylsilane particles with a mobile phase of water—methan ol—acetonitrile (40:30:30, v/v/v) at a flow rate of ul min⁻¹ at ambient temperature, 400 with and withoutthe useof 1,2dichlorobenzeneastheinternalstandard. Thecurrent USP method for the analysis ofclonazepamusinga300×3.9mmi.d.conventionaloctyldecylsilanecolumnwas utilized as a comparison to the smallbore method. The retention times for clonazepamandtheinternalstandardonthe3.0mmi.d.columnwere4.0and12.5 min, respectively. The intra-and interday RSD sonthe 3.0 mmi.d. columnwere

<0.55% (n=4) using the internal standard, and <0.19% (n=4) without the internal standard at the lower limit of the standard curve, 50 μ g ml⁻¹ and had a limit of detection of 24 ng ml⁻¹. The assay using the 3.0 mm i.d. column was shown to be suitable for measuring clonazepam in a tablet dosage form.[43]

2. AIMAND OBJECTIVE

Theliteraturesurveyrevealedthatspectrophotometricmethod, HPTLC method and Reverse phase HPLC method were used forthe determination of drug in the tablet dosage form and also for its determination in biological specimens.

In the present study the aim was to develop a new RP HPLC method for the determination of the drug in its API form and its validation. The plan of the work can be represented as follows.


PlanofWork

- ToobtainthroughknowledgeinpracticalHPLCmethoddevelopment.
- Toimplementastep-by-stepprocedureformethoddevelopment and to setinitial chromatographic conditions for the assay of Finasteride API.
- To conduct trails for the initial chromatographic conditions and to findoptimum conditions.
- TovalidatethedevelopedRP-HPLCmethod.

3. DRUG PROFILE

Name-Finasteride

ChemicalName-N-(2-methyl-2-propyl)-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide, *Structure*-

Figno.:structureofFinasteride Molecular

Formula-C23H36N2O2

MolecularMass-372.549g/mol

Solubility-Freelysolinchloroform,DMSO,ethanol,methanol,n-propanol;sparinglysol in propylene glycol, polyethylene glycol 400; very slightly sol in 0.1N hydrogen chloride, 0.1N sodium hydroxide,water.

MeltingPoint-252-254°C

Pka value: (Strongest Acidic) 4.86 Category-5-alphareductase inhibitors.

Mechanism of action- Finasteride acts as a competitive and specific inhibitor of Type II 5α - reductase, a nuclear-bound steroid intracellular enzyme primarily located in the prostatic stromal cell that converts the androgen testosterone into the more active metabolite, 5α- dihydrotestosterone (DHT). DHT is considered be the primary androgen playing role to thedevelopmentandenlargementoftheprostategland. Its erves as the hormonal mediator for the hyperplasia upon accumulation within the prostate gland.⁷ DHT displays a higher affinity towards androgen receptors in the testosterone¹⁰ prostate gland compared to and byacting on theandrogenreceptors, DHT modulates genes that are responsible for cell proliferation. Personable for the production of **DHT** together with type 5α-reductase, the typeII5αreductaseisozymeisprimarilyfoundintheprostate,seminalvesicles,epididymides, and hair follicles as well as liver. 11 Although finasteride is 100-fold more selective for type II 5α-reductase than for the type I isoenzyme,3 chronic treatment with this drug may have some effect on type I 5α-reductase, which is expressed predominantly in sebaceous glands of most

regionsofskin,includingthescalp,andliver.ItisproposedthatthetypeI5α-reductaseand reductaseisresponsiblefortheproductionofone-thirdandtwo-thirdsofcirculating DHT, respectively.

typeII5α-

Protien binding: Approximately 90% of circulating finasteride is bound to plasma proteins **Half-life:** In healthy young subjects receiving finasteride, the mean elimination half-life inplasma was 6 hours ranging from 3 to 16 hours. In elderly patients over the age of 70 years, the half-life is prolonged to 8 hours.

Use: Finasterideisused totreatmenwithan enlarged prostate (benign prostateenlargement). It can help ease your symptoms if: it's difficult to start peeing. You need to pee urgently or frequently more often.

4. MATERIALSANDMETHODS

A simple and sensitive reverse-phase HPLC method has been developed for the analysis of Finasteride.HPLCsystemusedwasJASCOsystemequippedwithmodelPU4180RHPLCpump, Rheodynesampleinjectionport(20µl), JASCOUV-4075UV-VISdetector and ChromNAVCFR chromatographysoftware (version 2.0). Separation was carried out on HiQSil C18 (250 mm × 4.6 mm, 5 µm) column. The analyte was monitored by UV detection at 245nm using an isocratic mode withbufferandmethanolinthe ratio520:480v/vas mobile phase. The flow rate wasset at 1.0ml/min. The retention time for the drug was at 4.540min.Calibration curves for Finasteride were recorded.

EquipmentandApparatusused:

- Analyticalbalance(MetllerToledoAG-245)
- Vacuumfilterpump
- Ultrasonicator(sonarex)
- Membranefilter (0.45 and 0.2 microns)
- pH-Meter(LabIndia)

ChemicalsandReagentsused:

- a) Acetonitrile(HPLCgrade)
- Ortophosphoricacid(HPLCgrade).
- c) Triethylamine(HPLCgrade)
- d) Water(HPLCgrade)
- e) Methanol(HPLCgrade)

Referencestandards:	
Finasteride Hydrochloride	 Supplier

%purity	99.5%
---------	-------

The reference standard was obtained as gift sample and the authenticity and purity of the sample was certified.

Finasteride-25mg

METHODDEVELOPMENT

The objective of this experiment was to optimize the assay method for the estimation of Finasteride. The trials were done to optimize the chromatographic conditions.

Preparation of mobile phase and standard solution of the drug for trails:-

The mobile phase was prepared with a composition according as indicated in the table no 6 for the purpose of different trails. The mobile phase was filtered through 0.4μ filter and sonicated. The mobile phase was used as a diluent to prepare the standard solution.

Standardsolutionwaspreparedforeachtrailintherespective mobile phase.

WorkingstandardsolutionofFinasterideHydrochloride:

About 50 mg of working standard of Finasteride Hydrochloride was weighedandtransferred into a clean and dry 50 ml standard flask. The sample wasdissolvedinasmallvolumeofmobilephasebysonicationforabout10min, and the volume was madeupwiththemobilephase.(1000µg/ml).0.5mlofthe stocksolutionwaspipettedinto a10 ml standard flask and diluted to mark with mobile phase (concentration 50 mcg/ml).

The standard solution was injected into the column in each trail. The Retentiontime at each trail was determined. The column, mobile phase and results obtained in the trails have been indicated in the table 6. The table also revealstheresultofthe chromatogramsintermofretentiontime. The trail no 5 employed was found to be satisfactory in which column, mobile phase orthophosphoric acid, and triethylamine buffer: methanol (520:480) were used to obtain adequate results.

Table:1

Different combinations of buffered solvent system tried with different column in trails

Sr.no/ Trail.	Stationary phase	Mobile phase	Flow rate	Temp.	Wave length	Retention Time	Remarks
no							

1.	OEM Column, C18(250X4. 6X5µ)	Water:Methanol 65:35	1 ml/min	40°C	245nm	16.043	Symmetric peak,More retention time
2.	Inertsil ODS C18 (250X4.6X 5µ)	Water:Acetonitrile 60: 40	1 ml/min	40°C	245nm	11.870	Small tailing
3.	Inertsil ODS C18 (150X4.6X 5µ)	0.1MAmmonium Phosphatebuffer: Acetonitrile 40:60	1 ml/min	40°C	245nm	5.587	Less Retention time
4.	Kromasil C18 (150X4.6X 5µ)	Phosphatebuffer: Acetonitrile: Methanol 650: 210: 140	1.5 ml/min	Ambient	250nm	8.302	Peak broadenin g
5.	Develosil ODSHG-5 (250X4.6X 5µ)	Ortho phosphoric acid, Triethylamine buffer:Methanol 520:480	1 ml/min	40°C	245nm	4.543	Well resolved

PeakofFinasteridewaswellresolvedwiththecolumnwiththesolventsystemoforthphosphoricacid,

triethylamine buffer: methanol in the ratio of 520: 480 as shown in following Fig 4.

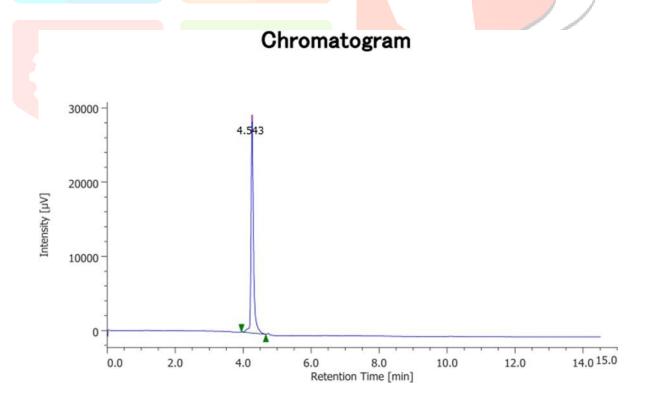


Figure 4:- Chromatogram of drug (Optimised mobile phase)

Chromatogram

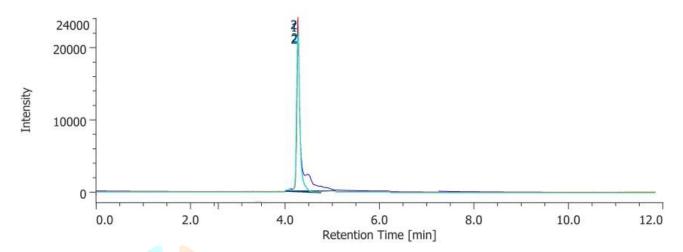


Figure5:-Overlayof HPLCgraph

Optimized method Preparation mobile phase:

Preparationofbuffer:

Thebuffersolutionwaspreparedbymixing2mloftriethylamineand2 ml oforthophosphoric acid in water and the volume was madeup to 1000 ml.

Preparationofmobilephase:

The mobile phase was prepared by mixing buffer and methanol in the ratio 520:480v/v respectively and filtered through 0.45µ filter. The mobile phasewasthensonicatedusingUltra-sonicatortoremove the dissolvedgases.

Preparation of Diluent:

Mobilephasewasusedasthediluent.

Determination of Retention time:

Preparation of Finasteride Hydrochloride standard stock solution:

Working standard solution of Finasteride Hydrochloride:

About 50 mg of working standard of Finasteride Hydrochloride was weighedandtransferred into a clean and dry 50 ml standard flask, the sample was dissolved in a small volume of mobile phase by sonication for about 10 minandthevolumewasmadeupwiththemobilephasefilteredthrough0.45µ filter.

(1000µg/ml).0.5 ml of the stock solution was pipetted into a10 ml standard flask and diluted to mark with mobile phase (concentration-50 mcg/ml).

TheretentiontimeofFinasterideHydrochloridewasfoundtobe4.540minwheninjectedand chromatograms are shown in the Fig.11 and Fig.12.

Application of standard method for the sample:

Sample : Finasteridetablet.

Labelclaim : Finasteride25mg.

Mfg.by : NatcoPharmaPvtLimited.

Preparationofworkingsamplesolution:

Average weight of the tablet was computed from the weight of 20 tablets. The tablets were powdered. The tablet powder equivalent to 100 mg of Finasteride was accurately weighed and transferred into a clean and dry 100 ml standard flask. The sample was dissolved in a small volume of mobile phase by sonication for about 10 min and the volume was made up with the mobile phase. The solution was filtered by using Whatmann filter paper. (Concentration 1000 µg/ml).0.5 ml of the stock solution was pipetted into a 10 mlstandard flask and diluted to mark with mobile phase. It was filtered through 0.45 µ filter (Concentration-50 mcg/ml).

Thesamplewasinjectedandchromatogramswererecordedandshowninthe

Fig.13.

The amount of Finasteri depresent in each tablet formulation was calculated by comparing the peak area of the test with that of the standard.

Assay:

Assay of formulation available in the market was carried by preparing the samplesolutionasindicatedaboveprocedureinjectedintoHPLCsystem.The

IJCRI

percentagepuritywasfoundoutbyusingfollowingformula. Recoverystudies were also carried out. The results were discussed.

The content of Finasteri de present in the table to faverage weight:

$$\frac{AT}{AS} = \frac{WS}{25} = \frac{0.5}{10} = \frac{V}{0.5} = \frac{10}{429.9} = \frac{P}{100} = \frac{Avg. Wt.}{LC} = 100$$

Where,

AT = average area counts of sample preparation.

AS =averageareacountsofstandardpreparation. WS

=weight of working standard taken in mg.

P = Percentagepurity of working standard LC

=Label Claim

TW =weight of sample

takenAvgwt=averageweightoftabletinmg

393.9=MolecularweightofFinasteride

429.9=MolecularweightofFinasteridehydrochloride

Tabletaverageweight 45.8

Weightofstandard 25.4 mg

Weightofsample 42.6 mg

Labelclaim 25 mg

Std. purity 99.5

393.9/429.9mg Factor for calculation:

Avg.standardArea 2015.879

Avg.samplearea 2014.965

$$\frac{2014.965}{2015.879} = \frac{25.4}{25} = \frac{0.5}{10} = \frac{10}{42} = \frac{10}{0} = \frac{393.3}{429.9} = \frac{99.5}{100} = \frac{45.8}{25} = 100$$

IJCR

= 99.5%.

TheamountofFinasteridepresentinthetabletofaverageweight

=99.5/100X 25

=24.875mg.

VALIDATION

Validation of analytical method for the assay of Finasteride:

Validation of analytical method is a process to establish that the performance characteristics of the developed method meet the requirement of the intended analytical application.

Design of the experiment:

Typicalanalyticalparametersusedinassayvalidationare:

METHODVALIDATION

- 1. SYSTEMSUITABILITYSTUDIES
- 2. SPECIFICITY
- 3. LINEARITYANDRANGE
- 4. PRECISION
 - a) SYSTEMPRECISION
 - b) METHODPRECISION
- 5. RUGGEDNESS
- 6. ACCURACY
- 7. ROBUSTNESS
- **8. LOD**
- 9. LOQ

1. SYSTEMSUITABILITY

Preparation of standard stocks olution:

About 50 mg of working standard of Finasteride Hydrochloride was weighed andtransferredintoacleananddry50mlstandardflask, thesample was dissolved in small volume of mobile phase by sonication for about 10 min and the volume wasmade up with the mobile phase. (1000µg/ml)

 $0.5 mlof the stock solution was pipetted into a 10 ml standard flask and \ diluted to mark with mobile phase (concentration-50 mcg/ml) and filtered through <math display="inline">0.45 \mu$ filter.

Procedure:

The standard solution was injected for five times and measured the area of all five injections in HPLC. The %RSD for the area of five replicate injections was found to be within the specified limits. The Chromatograms were shown in Fig. 14. The results were discussed in the following table 7.

TableNo.2

DataforSystemSuitability

Injection	tR	PeakArea	USP	USP
	\ \ \		Plate count	Tailing
1	4.547	2036.567	6470	1.147
2	4.553	2032.964	6865	1.65
3	4.5	2036.427	6911	1.69
4	4.5	2028.420	6932	1.69
5	4.547	2037.567	6890	1.65
Mean	4.5454	2034.389	6906.6	1.67
SD	0.00896	3.7635222	46.418	0.02
%RSD	0.2 0	0.18	0.672	1.43

2. Specificity

The specificity of the method was evaluated by analyzing the sample solutionspiked with the excipients at appropriate levels. The assay result was unaffected by the presence of extraneous materials.

Preparationofplacebo:

Placeboisprepared by mixing all excipients without active ingredients.

Determination:

About 100mg of placebo was weighed accurately and transferred in to 100mlofvolumetricflask,mixedthoroughlywithsufficientmobilephaseand thevolumewasmadeupto100mlwithdiluent. The solution was filtered. 0.5 ml of this solution was diluted to 10 ml with mobile phase. The solution was again filtered through millipore filter and 10 μ l of this solution was injected and chromatogram was recorded shown in the Fig.15.

About 50 mg of Finasteride working standard was weighed accurately and transferred into 100 ml standard flask, dissolved in small volume of the mobilephase.100mgofplacebowasmixedwithabovesolutionandmadeup the volume with mobile phase, filtered through millipore filter, 10µl of this solutionwasinjectedandchromatogramwasrecordedshowninFig.16,17and reports were shown in table 8.

Sr. %Contentof Sample Area No. obtained drugw/v 2037.567 99.81%w/ 1 **Standard** 2 Standard+ 2028.420 99.43%w/ placebo 3 Placebo 0 0

TableNo. 3Specificityfor Finasteride

3. LINEARITYANDRANGE

Linearity was assessed by performing measurement at several analyte concentrations. A minimum five concentrations were recommended for linearity studies.

The linearity of an analytical method is its ability to show test results thatisdirectlyproportionaltotheconcentrationofanalyteinsample within given range. The linearity of an analytical method was determined by mathematical treatment of test result obtained by analysis of samples with analyte concentration across claimedrange of peak area Vs concentration is plotted and percentage curve fitting is calculated.

	Percentagecurvefittingshouldnotbeless than 99.7%
--	--

Preparationofworkingstandardsolution

IJCR

Finasteride was weighed accurately and stock solution was prepared. Different volumesofstocksolutionweredilutedtogetaconcentrationrangeof 10 to $60 \mu g/ml$.

TableNo.4Preparationofworkingstandardsolution

S.No	Volume of stock solutiontaken(ml)	Volumetric flasktaken (ml)	Concentration of Solution(mcg/ml)
1	0.1	10	10
2	0.2	10	20
3	0.3	10	30
4	0.4	10	40
5	0.5	10	50
6	0.6	10	60

Procedure:

10µl of working standard solution were injected in duplicate and thechromatograms were recorded and shown in Fig.18 to 23.

The correlation co-efficient and percentage curve fitting were calculated from the following formula.

$$R = \frac{3(x-\overline{x})^2(y-\overline{y})^2}{(n-\overline{1})S_XS_Y}$$

Where

x=concentration

y = instrumental

responseS_X=standard

deviationofxSY=

standarddeviationofy

Percentagecurvefitting=100xcorrelationcoefficient

Acceptancecriteria		Correlation coefficient should not be less than 0.99%
	:	Curvefittingshouldnotbelessthan99.7%

The linearity data and analytical performance parameters of Finasteride wasshownintableandcalibrationcurveofFinasteridewasshowninFig.24.

Fig.24CalibrationcurveofFinasteride.

TableNo.5 DataforLinearity

Conc.	Avg. Area
(µg/ml)	
10	464.112
20	860.935
30	1222.921
40	1612.944
50	2011.541
60	2395.321

TableNo.6LinearityresultsforFinasteride

Conc.(µg/ml)	10	20	30	40	50	60
Peakarea	464.1 <mark>12</mark>	861.433	1222.921	1612.944	2011.541	2395.321
	7					
Correlation			0.	999		/

TableNo.7CalibrationparametersforFinasteride

9	Parameter	Results
	Slope	38.56
	Intercept	78.40
Correlationco-		0.999
efficient		
Po	ercentagecurve fitting	99.9%

4. PRECISION

Precision of an analytical method is the degree of agreement among individualtest result when the procedure is applied repeatedly to multiple samplingsofahomogenoussample. Precision of analytical method is usually expressed as the standard deviation or relative standard deviation.

Determination:

The precision of an analytical method was determined by assaying sufficient number of sample and relative standard deviation is calculated.

The precision of the instrument is determined by assaying the samples consecutively number of times and relative standard deviation is calculated.

Acceptancecriteria	:	Therelativestandarddeviationshouldbe
		within 2%

A. SYSTEMPRECISION

Preparation of standard solution:

About 50 mg of working standard of Finasteride Hydrochloride was weighed andtransferredintoacleananddry50mlstandardflask, thesample was dissolved in a small volume of mobile phase by sonication for about 10 minandthevolumewasmadeupwiththemobilephase.(1000µg/ml).0.5mlof thestocksolution waspipettedinto a 10 ml standard flask and diluted to mark with diluent and filtered through 0.45µfilter (concentration-50 mcg/ml).

Procedure:

The standards olution was injected for five times and measured the area for allfive injections in HPLC. The %RSD for the area of five replicate injections was found to be within the specified limits. The Chromatograms were shown in Fig 25. The results were discussed in the Table 13, 14.

B. METHODPRECISION

Preparation of working samples olution

Average weight of the tablet was computed from the weight of 20 tablets. The tablets were powdered. The tablet powder equivalent to 100 mg of Finasteridewasaccuratelyweighedandtransferredintoacleananddry100ml standard flask. The sample was dissolved in a small volume of mobile phase by sonication for about 10 minand the volume wasmadeupwiththe mobile phase. The solution was filtered byusing Whatmann filter paper (Concentration 1000µg/ml).0.5mlofthestocksolutionwaspipettedintoa10mlstandardflask and diluted to mark with mobile phase and filtered through 0.45 µ filter (concentration-50 mcg/ml).

Procedure:

The sample solution was injected for five times and measured the area for allfive injections in HPLC. The %RSD for the area of five replicate injections was found to be within the specified limits. The Chromatograms were shown in the Fig.26. Theresults were discussed in the Table 15, 16.

The standard deviation and relative standard deviation were calculated from statistical formula.

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

 $Standarddeviation(\sigma) =$

Where,

x=sample,

xi=meanvalueofsamples,

n = number of samples

RelativeStandardDeviation(%)= $\sigma/xi\times100$

TableNo.8Precisiondataofthesystem

	100		
Injection	n	PeakArea	%
No			Recovery
1		2036.567	100.7
2		2032.964	100.5
3		2036.427	100.7
3 4		2028.420	100.3
5		2037.567	100.7
Mean		2034.389	100.58
SD		3.7635222	0.1789
%RSD		0.18	0.18

Table No. 9 System precision report for Finasteri de

Relativestandard	Finasteride	Acceptancecriteria
deviation	0.18	<2.0%

TableNo.10MethodprecisionofFinasteride

Injectionno	Peak	%
	Area	Recovery
1	2018.593	100.1
2	2014.965	99.96
3	2013.985	99.92
4	2015.879	100.0
5	2011.118	100.3
Mean	2017.031	100.056
SD	3.140105	0.151912
%RSD	0.16	0.15

Table No.11 Method precision report for Finasteride

	Finaster ide	Acceptance criteria
Relativestandard deviation	0.16	<2.0%

5. RUGGEDNESS

The ruggedness of an analytical methodis degree of reproducibility of test result obtained by the analyst under a variety of normal test condition. Suchasdifferentlaboratories, different analysts, different instruments, lots of reagents, different elapsed assay times, different temperature, different days etc.

Theruggedness of an analytical method is determined by aliquots from homogenous lots by different analyst using operational and environmental conditions that may differ but are also with in the specified parameters of the assay. The degree of reproducibility of test results is then determined as function of the assay variables. This reproducibility may be compared with the precision of the assay under normal condition to obtain a measure of the ruggedness of the analytical method. The assay of Finasteride was performed in different days.

Procedure:

Workingstandardsolutionandworkingsample solution Finasteride were prepared by different analystandon different days and 10 µlof working sample solution was injected and chromatograms were recorded shown in Fig. 27,28 and ruggedness of the method and report of Finasteride was shown in Table 17,18.

TableNo.12RuggednessresultsforFinasteride:(Day-1,Analyst-1)

Parameter	Peak Area	% Assay
Avg	2054.018	99.68
%RSD	0.04	0.43

TableNo.13RuggednessresultsforFinasteride:(Day-2,Analyst-2)

Parameter	Peak Area	%Assay
Avg	2056.393	100.865
%RSD	0.03	0.26

6. ACCURACY

The Accuracy of an analytical method is the closeness of the test result obtained by that method to the true value

Accuracy is measured as the percentage of the analytes recovered by theassay. Spikedsamples were prepared intriplicate at three intervals a range of 100-150% of the target concentration, and injected into the HPLC system.

	Acceptancecriteria	:	Percentage recov	very should be within 90-
h			110%w/w	

PreparationofSampleStockSolution:

Average weight of the tablet was computed from the weight of 20 tablets. The tablets were powdered. The tablet powder equivalent to 100 mg of Finasteridewasaccuratelyweighedandtransferredintoacleananddry100ml standard flask. The sample was dissolved in a small volume of mobile phase by sonication for about 10 minandthevolumewasmadeupwiththemobile phase. The filtered byusing whatmann filter (Concentration solution was paper. 1000µg/ml).0.5mlofthestocksolutionwaspipettedintoa10mlstandardflask and diluted to mark with mobile phase and filtered through 0.45 µ filter. (Concentration-50 mcg/ml)

The stock solution was diluted with mobile phase. Further to obtain a concentration ranging from 45mcg to 65 mcg/ml. The dilution made was shown in the Table 15.

TableNo.14

Sr.No.	From stock sample solution volume taken (ml)	50 mcg/ml solution taken(ml)	Volumetric flasktaken (ml)	Concentration ofsolution (mcg/ml)
1	0.4	1	10	45
2	0.5	1	10	55
3	0.6	1	10	65

Procedure:

Thestandardsolution,45mcg/ml,55mcg/mland65mcg/mlsolutions were separately injected into the HPLC. The individual recovery and mean recoveryvalueswerecalculated.ThechromatogramswereshowninFig.29 to

32. Theresults were discussed in the Table 20.

TableNo.15PercentageRecoverydataforFinasteride

Sr.No.	Spike	Amount	Amount	%Recovery	Mean%
	Level	(µg/ml) added	(μg/ml) found	13	Recovery
1	100 %	45	45.85	101.88	101.78
	100 %	45	45.77	101.77	
	100 %	45	45.78	101.75	
2	125 %	55	54.8	99.68	99.77
	125 %	55	54.84	99.72	
	125 %	55	54.87	99.77	
3	150 %	65	64.05	98.55	99.86
	150 %	65	64.23	98.81	
	150 %	65	64.12	98.70	

7. ROBUSTNESS

Robustnessofananalyticalmethodismeasureofitscapacitytoremain unaffected by small but deliberate variation in method parameters and provides on indication of its reliability during normal usage.

Determination:

The robustness of an analytical method is determined by analysis of aliquots from homogenous lots by differing physical parameters that may differ but are still within the specified parameters of the assay. For example change in physical parameters like flow rate and wavelength.

a) EffectofvariationofFlowrate:

A study was conducted to determine the effect of variation in flow rate by injecting 0.9 ml/min and 1.1ml/min. Sample solution was prepared and injected into the HPLC system. The retention time valuesweremeasured. The wereshownintheFig.33to35.Theresultswerediscussedin chromatograms the Table 22 to 24.

b) Effectofvariationofwavelength:

A study was conducted to determine the effect of variation in wavelength. Standard solution was prepared and injected into the HPLC system at 248nm and 244nm. The effects of variation in wavelength were measured. The chromatograms were shown in the Fig.36 & 37. The results were discussed in the Table 25 to 28.

TableNo.16ChromatographicconditionforRobustnessChangein flow rate0.9 ml/min

Changein flow	0.9ml/min
Instrument	HPLC Shimadzu Separation Module LC-20ATProminenceLiquid
Column	DevelosilODSHG-5 250X4.6,5μm
Wavelength	245nm
Injection volume	10μ1
Columnoven	40°c
Runtime	10min

TableNo.17ReportofRobustness

Drug	AverageRt in 0.9ml/min	AverageRt in 1.0ml/min	Average Asymmetry in0.9ml/min	%RSD
Finasteride	5.180	4.540	1.105	0.019

TableNo.18ChromatographicconditionforRobustnessChangein flow rate1.1 ml/min

Changein flow	1.1 ml/min
Instrument	HPLCShimadzuSeparationModuleLC-20AT
	Prominence Liquid
Column	DevelosilODSHG-5 250X4.6,5μm
Wavelength	245nm
Injection volume	10μ1
Columnoven	40°c
Runtime	10min

TableNo.19ReportofRobustness

Drug	AverageRt	AverageRt	Average	%RSD
	in	in	Asymmetry))
	1.1ml/min	1.0ml/m <mark>in</mark>	in1.1ml/m <mark>in</mark>	
-0.0				
Finasteride	4.113	4.540	1.161	0.21

TableNo.20ChromatographicconditionforRobustnessChangeinwavelength244nm

Change in Wavelength	244nm
Instrument	HPLCShimadzuSeparationModuleLC-20
	ATProminence Liquid
Colum	DevelosilODSHG-5 250X4.6,5μm
n	
Flowrate	1.0ml/min
Injectionvolume	10μ1
Columnoven	40°c
Runtime	10min

Table No. 21 Report of Robustness

Drug	Average Rtin244nm	Average Rtin 245nm	Average Asymmetry in244 nm	%RSD
Finasteride	4.543	4.547	1.167	0.043

 $Table No. 22 Chromatographic condition for Robustness Change\ in wavelength 248 nm$

Change in Wavelength	248nm	
Instrument	HPLCShimadzuSeparationModuleLC-20	
	ATProminence Liquid	
Column	DevelosilODSHG-5 250X4.6,5μm	
Flowrate	1.0ml/min	
Injectionvolume	10μl	
Columnoven	40°c	
Runtime	10min	

TableNo.23ReportofRobustness

Drug	Average	Average	Average	%RSD
	Rt in	Rtin	Asymmetry	101
	248 nm	245nm	in248 nm	C'12
Finasteride	4.543	4.547	1.114	0.015
				ļ.

8. LimitofDetection(LOD)

It is the lowest amount of analyte in a sample that can be detected, but not necessarily quantities as an exact value, under the stated experimental conditions. The detection limit is usually expressed as the concentration of analyte (percentage partsper million) in the sample.

Itisdeterminedbybasedonthestandarddeviationofresponseandtheslope.

Thedetectionlimitmaybeexpressed as

The LOD was determined by the

formula:

LOD= $3.3\sigma/S$

13CR

Where

 σ = standarddeviationofthe

response

S = slopeofcalibrationcurve

LOD = 3.3(0.00896/38)

 $= 0.000766 \mu g/ml$

Fromtheformulalimitofdetectionwasfoundtobe=0.000766µg/ml

9. *LimitofQuantification(LOQ)*

It is the lowest amount of analyte in a sample that can be determined with acceptable precision and accuracy under the stated experimental conditions. Quantification limit is expressed as the concentration of analyte (e.g. % ppm) in the sample. Which can be quantitated with suitable precision and accuracy.

Based on the deviation of the response and the

slope.Quantitationlimit(QL)maybeexpressed as:

LOQ=10σ/S

Where

Standarddeviation of the response

S = slopeofcalibrationcurve

LOQ = 10(0.00896/38.56)

 $= 0.002323 \mu g/ml.$

Fromtheformulalimitofquantitationwasfoundtobe=0.002323µg/ml.

6. RESULTSANDDISCUSSION

Validation of analytical method for determination of assay of Finasteride 25 mg tablets was performed for the parameters including – Specificity, Linearity and Range, Precision (System precision, Method precision), Intermediate precision (Ruggedness), Accuracy and Robustness. The summary of results obtained appended below.

Parameter	AcceptanceCriteria	Results
Specificity	Thereshouldnotbeany interference from placebo, blank and mainpeak. (Active)	Thereisnointerference fromblank,placebo and sample peak.
Linearity andRange	Correlationcoefficientshould be not less than 0.995 over workingrange.	Correlationcoefficient =0.9999.
Precision Repeatability System precision	%RSDshouldnotbe more than 2.0%	SD=0.1789 %RSD=0.18
Repeatability Method precision	%RSDshouldnotbe morethan2.0%	SD=0.1519 %RSD=0.15
Intermediate precision Ruggedness	%RSDshouldnotbemore than2.0% Thedifferencebetweenassay ofmethod precision and	Day1andAnalyst1 %Assay=99.68 %RSD=0.43 Day2andAnalyst2
	intermediateprecisionshould notbemorethan 2.0%	%Assay=100.865 %RSD=0.26

	Recoveryateachleveland	Recovery ateach
	%meanrecoveryshouldbe	level98.55to101.88.
Accuracy	between 100% to 150% with	Mean
	%RSDshouldnotbemore	Recovery99.86
	than2.0%	to101.78.
		%RSD= 0.18
	%RSDshouldnotbemore	SD=3.76352
Systemsuitability	than2.0%	%RSD=0.18

Robustness: Bychangeinflowrate

a) 0.9ml/min	%RSDshouldnotbe morethan2.0% Asymmetryfactorshould notbe more than2.0%.	%RSD =0.019 Asymmetryfactor=1.105
b) 1.1ml/min	%RSDshouldnotbe morethan 2.0%. Asymmetry factor should notbemorethan 2.0%	%RSD=0.21 Asymmetryfactor=1.161

Bychangein wavelength			
a)248nm	%RSDshouldnotbemore	%RSD=0.015	
	than2.0%	Asymmetryfactor=1.114.	
	Asymmetry factors hould not		
	bemorethan2.0%		
b)244nm	%RSDshouldnotbemore	%RSD=0.043	
200	than2.0%	Asymmetryfactor=1.167.	
2 6 5	Asymmetryfactorshouldnot		
	be morethan2.0%	C	

DISCUSSION:

The observations and results obtained for each parameter including Specificity, Linearity and Range, Precision (System precision, Method precision),Intermediateprecision(Ruggedness),AccuracyandRobustnesslie wellwithin theacceptancecriteria.

7. CONCLUSION

Forroutineanalyticalpurposeitisdesirabletoestablishmethods capable of analyzing huge number of samples in a short time period with good robustness, accuracy and precision without any prior separation step. HPLC method generates large amount of quality data, which serve as highly powerful and convenient analytical tool.

IJCR

Finasteride was slightly soluble in methanol and very slightly soluble in water. Methanol and Mixture of Buffer was chosen as the mobile phase. The run time of the HPLC procedure was 10 minutes.

validated The method was for system suitability, linearity, precision, accuracy, specificity, ruggedness robustness, LOD and LOQ. The system within suitability parameters were limit, hence it was concluded that the system was suitable toper form the assay. The methodshowslinearitybetweentheconcentrationrangeof10-60µg/ml.The% recoveryofFinasteridewasfoundtobeintherangeof99.86%-101.78

%.Astherewasnointerferenceduetoexcipientsandmobilephase,the methodwasfoundtobe specific.Themethodwasrobust andruggedas observed from insignificant variation in the results of analysis by changes in Flow rate and wave length separatelyand analysis being performed by different analysts.

Goodagreementwasseenintheassayresultsofpharmaceutical formulation by developed method. Hence it can be concluded that the proposedmethodwasagoodapproachforobtainingreliableresultsand found to be suitable for the routine analysis of Finasteride in the pharmaceutical formulation.

REFERENCES

- 1. GuptaV, JainAD, GillNS, GuptaK. Developmentandvalidation of HPLC method-areview. Int. Res J Pharm. App Sci. 2012;2(4):17-25.
- 2. Kazakevich Y, Lobrutto R, HPLC for Pharmaceutical Scientist. John Wiley & Sons. New Jersey. 2007:50-98.
- 3. Ahuja S, Rasmussen H, Development for Pharmaceuticals, Separation Science and Technology, Elsevier, New York 2007:(8):146-184.
- 4. Azim MS, Mitra M, Bhasin PS, HPLC method development and validation. A review: Int. Res. J. Pharm. 2013: 4(4):39-46.
- 5. Yuri K, and Rosario LB, HPLC for pharmaceutical scientists. John Wiley and Sons, Inc. Hoboken. New Jersey. 2007:92-98.
- MichaelSwartzE,IrasK,Analyticalmethoddevelopmentandvalidation.CRCpress.Marcel dekker. Inc. Madison Avenue. New York. 1997:19:62-185.
- 7. http://www.scribd.com/doc/9508765/PhysicalProperties-of-Drug[Lastaccessedon2018Mar 03].
- 8. BuffersandpHBuffers:availablefrom:www.xtremepapers.com[Lastaccessedon2018Nov 03].

- 9. Understanding pH Buffers: which one to use, and at what concentration: available from: www.laserchrom.co.uk [Last accessed on 2018 Mar 15].
- 10. Technical Tips: Selecting Buffers pH in Reversed-phase HPLC: available from: download.5117.com/data/file/30.pdf [Last accessed on 2018 Mar 20].
- 11. Reversed-phase HPLC Buffers: High Quality Buffers (solutions, solids or concentrates): available from: ccc.chem.pitt.edu/wipf/web/HPLC_RP_buf fers.pdf [Last accessed on 2018 June 12].
- 12. Buffers and Buffering Capacity: available from: www.bartek.ca.[Last accessed on 2018 Jul 12].
- 13. Chandra M., Buffers: A guide for the preparation and use of buffers in biological system: available from: www.calbiochem.com [Last accessed on 2018 Jul 12].
- 14. Columnsfromhttp://www.waters.com/watersdivision/pdf/Ic3AC.pdf[Lastaccessedon2018 Aug 05].
- 15. Columnsfromhttps://www.agilent.com/[Lastaccessedon2018Aug 05].
- 16. Columnsfromhttps://www.phenomenex.com/[Lastaccessedon2018Aug 05].
- 17. WagawS., TedrowJ., GriemeT., BavdaL., WangW., ViswanathS. et al. HPLCGuide; Departments . R450, R452, R45R.
- 18. MayerML.HPLCforPharmaceuticalscientist.Am.Lab.1997:29:34-37.
- 19. KaushalC,SrivastavaJ,AProcessofMethodDevelopment.AChromatographicApproach.J Chem Pharm Res. 2010. 2(2):519-545.
- 20. DeanJA, AnalyticalChemistryHandbook.McGraw-Hill.NewYork. 1995:125-169.
- 21. MerrillJC, HPLC for Pharmaceutical Scientist. Am. Lab. 1987:74-81.
- 22. ICHQ7AGoodManufacturingPracticeGuidanceforActivePharmaceutical Ingredients:33.
- 23. NashRA, Wachter AH, In Pharmaceutical Process Validation. Revised and Expanded. Marcel Dekker Inc. New York. Third Edition. 1993: 145-210.
- 24. PotdarMA, Pharmaceutical QualityAssurance. Nirali Prakashan. 2nd Edition. 2009:8.6-8.
- 25. WHO Expert Committee on Specifications for Pharmaceutical Preparations. WHO technical report. series no. 863 34th report. Annex 6 GMP: Guidelines on the validation of manufacturing processes: 4-7.
- 26. ICH. Q2A. Text on Validation of Analytical Procedures. International Conference on Harmonization. Geneva. 1994 October: 1-7.
- 27. ICH, Q2B, Validation of Analytical Procedures. Methodology. International Conference on Harmonization. Geneva. 1996 November.
- 28. ICH. Q2 (R1) Validation of Analytical Procedures. Text and Methodology. International Conferences on Harmonization. Draft Revised. 2005 November: 1-17.
- 29. Patel N, Meshram D. Development and validation of analytical method for simultaneous determination of minoxidil and finasteride in pharmaceutical dosage form by RP-HPLC method. International Journal of Pharmaceutical Sciences and Research. 2015 Nov 1;6(11):4882.
- 30. Thimmaraju M, Rao V, Gurrla S. RP-HPLC Method for the determination of finasteride in bulk and pharmaceutical formulations. J Anal Chem. 2011;1(6):31-7.
- 31. Shah DS, Jha DK, Amin PD. Development, validation, and application of an RP-HPLC

- methodforconcurrentquantificationofMinoxidilandFinasterideinatopicalsolutionforhair regrowth. InAnnales Pharmaceutiques Françaises 2021 Mar 1 (Vol. 79, No. 2, pp. 194-206). Elsevier Masson.
- 32. ThimmarajuMK,RaoV,GurralaS.RPHPLCmethodforthedeterminationoffinasterideand tamsulosin in bulk and pharmaceutical formulations. Der Pharmacia Lettre. 2011;3(5):79-86.
- 33. Basavaiah K, Somashekar BC. Determination of finasteride in tablets by high performance liquid chromatography. E-journal of chemistry. 2007 Jan;4(1):109-16.
- 34. Venkata KB, Battula SR, Dubey S. Validation of Finasteride in pharmaceutical dosage by reverse-phase HPLC with internal standard method. Journal of Chemistry. 2013 Jan 1;2013.
- 35. Pallikonda SK, Subburu S, Soma SR, Reddy CS. Method development and validation of Finasteride by RP-HPLC method. consultant. 2011 Oct;30:0.
- 36. ChandraR,SanghiA,KumarD,BhartiAK.DevelopmentandvalidationaRP-HPLCmethod: application for the quantitative determination of Finasteride from marketed bulk tablets. Journal of Chemical and Pharmaceutical Research. 2016;8(1):142-6.
- 37. NagarajuP.DevelopmentandvalidationofRP-HPLCmethodforestimationofFinasteridein pharmaceutical formulations. Pharmaceutical Methods. 2015 Jul 30;6(2):105-8.
- 38. Rosa PC, Pires IF, Markman BE, Perazzo FF. Development and validation of RP-HPLC method for the determination of related compounds in quetiapine hemifumarate raw material and tablets. Journal of Applied Pharmaceutical Science. 2013 Aug 30;3(8):006-15.
- 39. NakamuraM,FukawaK,SugiyamaT,KatagiriY.High-performanceliquidchromatographic assay of clonazepam in human plasma using a non-porous silica column. Biological and Pharmaceutical Bulletin. 2004;27(6):893-5.
- 40. Sallustio BC, Kassapidis C, Morris RG. High-performance liquid chromatography determination of clonazepam in plasma using solid-phase extraction. Therapeutic drug monitoring. 1994 Apr 1;16(2):174-8.
- 41. FoudahAI,AlshehriS,ShakeelF,AlqarniMH,AljarbaTM,AlamP.SimultaneousEstimation of Escitalopram and Clonazepam in Tablet Dosage Forms Using HPLC-DAD Method and Optimization of Chromatographic Conditions by Box-Behnken Design. Molecules. 2022 Jun 30;27(13):4209.
- 42. Singh SS, Shah H, GuptaS, Jain M, Sharma K, Thakkar P, Shah R. Liquid chromatography—electrospray ionisation mass spectrometry method for the determination of escitalopram in humanplasmaanditsapplicationinbioequivalencestudy. Journal of Chromatography B. 2004 Nov 25;811(2):209-15.
- 43. Spell JC, Stewart JT. Analysis of clonazepam in a tablet dosage form using smallbore HPLC. Journal of pharmaceutical and biomedical analysis. 1998 Nov 1;18(3):453-60.