**IJCRT.ORG** 

ISSN: 2320-2882



# INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

# The Effectiveness Of Muscle Stimulation And Conservative Therapy Versus Propioceptive Neuromuscular Facilitation (Pnf) Among With Stretching In Lower Limb In Spastic Diplegic Cerebral Pasly- A Comparative Study

Dr. Zarana Chi<mark>ragbhai Barot<sup>1</sup>. Dr. Brijal Patel <sup>2</sup>, Dr. Ravindrasinh Rajput<sup>3</sup>

<sup>1</sup>second year MPT student, <sup>2</sup>Assistant professor of gokul physiotherapy college, <sup>3</sup>Dean of gokul physiotherapy college

Gokul Global university, Siddhpur, Gujarat</mark>

DR. ZARANA CHIRAGBHAI BAROT
(MPT NEUROSCIENCES)

#### **ABSTRACT**

**Background & Purpose:** Spastic diplegic cerebral palsy (CP) significantly affects lower limb function in children, leading to challenges in muscle control and coordination. This comparative study aims to evaluate the effectiveness of two therapeutic interventions—muscle stimulation combined with exercise versus proprioceptive neuromuscular facilitation (PNF) with stretching—in improving lower limb function among children diagnosed with spastic diplegic CP.

**Aim & Objective:** The primary aim of this study is to determine whether muscle stimulation combined with exercise (Group A) is more effective than PNF with stretching (Group B) in enhancing lower limb function. Specific objectives include assessing changes in muscle strength, spasticity, gait mechanics, and flexibility, along with the broader impact on daily functional activities and overall quality of life.

**Material & Methods:** This study enrolled 30 children aged between 5 to 15 years with spastic diplegic CP. Participants were randomly assigned to Group A (muscle stimulation and exercise) or Group B (PNF with stretching). Over a 12-week intervention period, each group underwent three 45-minute sessions per week tailored to their respective treatment protocols. Assessment tools included the Modified Ashworth

Scale for spasticity and the Gross Motor Function Classification System (GMFCS) for outcomes related to muscle strength, spasticity reduction, gait mechanics, and flexibility.

#### **Hypothesis Testing:** The hypotheses for this study are:

- Null Hypothesis (H0): There is no significant difference in the improvement of lower limb function between Group A and Group B.
- Alternative Hypothesis (H1): There is a significant difference in the improvement of lower limb function between Group A and Group B.

Statistical analysis, including t-tests, was conducted to compare the mean differences between the groups. The level of significance was set at p < 0.05.

**Results:** The t-test results showed significant improvements in both intervention groups. Group A exhibited greater gains in muscle strength and spasticity reduction, with a significant decrease in Modified Ashworth Scale scores (mean reduction:  $2.1 \pm 0.5$ ) compared to Group B (mean reduction:  $1.5 \pm 0.4$ ), with a p-value of <0.05. Additionally, Group A demonstrated a more pronounced improvement in GMFCS scores (mean improvement:  $3.0 \pm 0.7$ ) compared to Group B (mean improvement:  $2.4 \pm 0.6$ ), indicating better overall enhancement in lower limb function. The null hypothesis (H0) was rejected in favor of the alternative hypothesis (H1), confirming a significant difference in the improvement of lower limb function between Group A and Group B.

Conclusion: Muscle stimulation combined with exercise (Group A) was found to be more effective than PNF with stretching (Group B) in improving muscle strength, reducing spasticity, and enhancing overall lower limb function in children with spastic diplegic CP. These findings advocate for the integration of muscle stimulation and exercise into rehabilitation protocols, emphasizing personalized therapeutic approaches tailored to the specific needs of children with spastic diplegic CP to maximize functional improvements and quality of life.

# **INTRODUCTION**

A congenital disorder and neurological conditions known as cerebral palsy mostly impair posture, muscular coordination, and movement.<sup>1</sup> It emerges due to abnormal brain development or damage to the developing brain, often before birth but sometimes during delivery or shortly after birth. <sup>2</sup>The condition is permanent and non-progressive, meaning the Brain damage does not get worse with time, though an individual's symptoms may alter as they get older.<sup>3</sup> CP is a leading cause of childhood physical disability and can present with a wide range of symptoms that vary in severity.<sup>3</sup> While some people may only have modest difficulties with their motor skills, others may have severe physical and mental impairments that need lifetime care and assistance.<sup>3</sup> The manifestations of CP include muscle stiffness (spasticity), involuntary movements (dyskinesia), poor balance and coordination (ataxia), and difficulties with fine and gross motor skills.<sup>4</sup> Additional complications often accompany these primary symptoms, such as seizures, intellectual disabilities, vision and hearing impairments, and speech difficulties. These complex needs require a multidisciplinary approach to care, involving physical, occupational, and speech therapists, along with medical specialists who manage related health issues.<sup>4</sup>

Premature birth, low birth weight, numerous pregnancies, maternal illnesses during pregnancy, and difficulties during labour and delivery that result in hypoxia or brain harm to the baby are risk factors.<sup>5</sup> Despite extensive research, in many cases, the exact cause remains unidentified. Diagnosis typically involves a thorough review of the child's medical history and developmental milestones, physical examinations, and diagnostic tests such as magnetic resonance imaging (MRI) or computed tomography (CT) scans to detect brain abnormalities.<sup>5</sup> Managing CP effectively requires a comprehensive treatment plan tailored to the individual's specific needs.<sup>5</sup> While there is no cure, various therapies and interventions can significantly improve quality of life.<sup>5</sup> Physical therapy focuses on enhancing strength, flexibility, and mobility, while occupational therapy helps with daily living activities and adaptive skills.<sup>6</sup> In addition, medications can be prescribed to manage spasticity and other symptoms, and surgical procedures might be necessary to correct anatomical abnormalities or improve function.<sup>6</sup>

Assistive devices such as braces, wheelchairs, and communication aids are also essential in supporting independence and improving daily functioning. Assistive devices such as braces, wheelchairs, and communication aids are also essential in supporting independence and improving daily functioning.

0922

Advancements in medical science, including regenerative medicine and neuromodulation, hold promise for future innovations in CP management.<sup>7</sup> Furthermore, understanding and addressing the psychosocial aspects of CP are critical for fostering an inclusive and supportive environment.<sup>7</sup> Providing adequate resources, education, and advocacy ensures that individuals with CP can lead fulfilling lives and participate fully in their communities.<sup>7</sup> Many obstacles must be overcome along the way for people with CP, but with the right support from society, early intervention, and care, these people can reach their full potential and have fulfilling lives..<sup>7</sup>

The term "cerebral palsy" (CP) refers to a collection of long-term conditions that impair posture and mobility, resulting in restrictions on activities because of non-progressive abnormalities in the developing foetus or baby brain. These motor diseases frequently come with seizures and consequent musculoskeletal issues, in addition to impairments in sensation, perception, cognition, communication, and behaviour.<sup>8</sup>

In infants, cerebral palsy manifests as persistent movement and motor issues, with the lower limbs experiencing the most severe motor challenges.<sup>8</sup> Symptoms commonly include joint problems, muscle tightness, and issues with flexibility and balance, making daily life significantly more difficult.<sup>9</sup>

Cerebral palsy (CP) is frequently caused by maternal diseases including high-grade fever or rubella during pregnancy, early birth with low birth weight, and neonatal hypoxia.9. These conditions can have a serious negative effect on a foetus's or baby's growing brain, which can result in a variety of mobility and postural issues.9. After examining one thousand cases of cerebral palsy from India, researchers discovered that 61% of the cases were spastic quadriplegia and 22% were diplegia. This high prevalence underscores the significant burden that these risk factors impose on neonatal health and development.

Physical therapy (PT) is essential in managing CP, aiming to improve strength, flexibility, and balance. Various PT methods target different objectives, every one having its own set of techniques and benefits. Proprioceptive Neuromuscular Facilitation (PNF) is a technique designed to enhance flexibility by stretching and contracting muscle groups simultaneously. Proprioceptors, which give details regarding joint angles, muscle lengths, and tension, are activated by PNF methods to facilitate deeper and more effective muscle relaxation following contraction. This method increases versatility in addition to but also enhances muscle strength, making it a dual-benefit method in physical therapy for CP.

Regular stretching exercises are another cornerstone of PT for CP. These exercises help reduce muscle stiffness and enhance flexibility, alleviating muscle cramps often experienced by individuals with CP. Stretching prepares muscles for more complex movements and enhances joint mobility, which is crucial for

\_

o923

maintaining functional independence in daily activities. Structured exercise routines further contribute to this by enhancing overall physical functions. <sup>10</sup> These routines, tailored to the individual's capabilities, aim to improve movement, muscle strength, balance, and overall longevity, enhancing life quality as a result. <sup>11</sup>

Various forms of stimulation, including electrical stimulation, tactile feedback, and thermal agents, are used in PT to enhance muscle activity and sensory awareness. <sup>11</sup> This approach is especially advantageous for persons who have difficulty with muscle contraction or sensory processing issues. <sup>11</sup> Stimulation techniques can strengthen muscles and enhance sensory input, which is vital for motor function and coordination. <sup>11</sup>

These therapies differ not only in their mechanisms but also in their primary objectives. PNF offers a thorough strategy that addresses both strength and flexibility. Stretching focuses on enhancing joint mobility. Exercise routines improve overall physical functions and bodily processes. Stimulation strengthens muscles and enhances sensory input. Each of these therapies plays a unique role in the holistic management of CP, addressing different aspects of motor dysfunction and aiming to optimize therapeutic outcomes. 11

Cerebral palsy (CP) encompasses a spectrum of permanent disorders affecting movement and posture, resulting from non-progressive disturbances that occur in the developing foetal or infant brain. <sup>11</sup>CP is often accompanied by disturbances in sensation, perception, cognition, communication, and behaviour, as well as seizures and secondary musculoskeletal problems. <sup>11</sup> The multifaceted nature of CP necessitates a comprehensive and multi-disciplinary approach to management, with physical therapy being a critical component. <sup>11</sup>

Among the different types of CP, spastic diplegic CP is characterized by high muscle tone and spasticity predominantly affecting the lower limbs. <sup>12</sup> This condition presents significant challenges for individuals, particularly in terms of mobility, balance, and coordination. <sup>12</sup> Managing spastic diplegic CP requires comprehensive therapeutic interventions aimed at improving motor function and enhancing overall quality of life. <sup>12</sup> Physical therapy plays a crucial part in this management, with various approaches targeting different aspects of motor dysfunction. <sup>12</sup> Traditional methods include muscle strengthening exercises, stretching routines, and stimulation techniques aimed at reducing spasticity and enhancing muscle function. <sup>12</sup>

However, the efficiency of these interventions can vary among individuals, emphasizing the requirement for additional exploration and validation of therapeutic approaches. <sup>12</sup> One promising avenue is the comparison of different therapeutic modalities to determine which is the most efficient strategies to enhance the functionality of the lower limbs in individuals with spastic diplegic CP. <sup>13</sup> This study seeks to compare the effectiveness of two such modalities: muscle stimulation combined with conservative therapy versus proprioceptive neuromuscular facilitation (PNF) combined with stretching. <sup>13</sup>By evaluating these approaches, the study aims to provide evidence-based insights into optimizing therapeutic outcomes and enhancing the quality of life for individuals with spastic diplegic CP.<sup>13</sup>

This comparative approach will involve assessing various parameters of motor function and overall physical health. 13 Muscle stimulation combined with conservative therapy will be evaluated for its ability to enhance muscle strength and sensory input, which is essential for functional mobility. 13 Conversely, however, PNF combined with stretching will be assessed for its impact on flexibility, joint mobility, and muscle coordination. <sup>13</sup> The results of this investigation should contribute to the creation of more potent and personalized therapeutic strategies for managing spastic diplegic CP, ultimately improving the lives of those affected by this challenging condition.<sup>13</sup>

# NEED OF THE STUDY

- Electrical stimulation reduces spasticity.
- Conservative therapy increases range of motion.
- PNF reduce spasticity.
- Stretching reduces spasticity.
- There are no studies available in the literature which compare the effect of electrical stimulation among with conservative therapy v/s PNF among with stretching.
- Therefore, the need of study is to find out the effect of Electrical stimulation with conservative therapy v/s PNF with stretching on lower limb in spastic diplegic cerebral palsy patient.

IJCRT21X0277 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

# AIMS AND OBJECTIVES OF STUDY

To evaluate and compare the effect of electrical stimulation with conservative therapy v/s PNF with stretching on lower limb in spastic diplegic cerebral palsy patient.

#### **OBJECTIVES**

- To evaluate the effect of electrical stimulation with conservative therapy in the lower extremities of cerebral palsy patients
- To evaluate of the effect of PNF with stretching in the lower extremities of cerebral palsy patients.
- To compare the effectiveness of electrical stimulation with conservative therapy v/s PNF among with stretching in lower extremities of cerebral palsy patients.

# **HYPOTHESIS**

#### **NULL HYPOTHESIS**

There is no significant difference between the effectiveness of muscle stimulation and conservative therapy versus PNF among with stretching in spastic diplegic cerebral palsy.

#### **ALTERNATIVE HYPOTHESIS**

There is significant difference between the effectiveness of muscle stimulation and conservative therapy versus PNF among with stretching in spastic diplegic cerebral palsy.

# **REVIEW OF LITERATURE**

# **Overview of Cerebral Palsy**

Cerebral palsy is a multifaceted neurological disorder resulting from non-progressive damage to the developing brain, primarily affecting movement and muscle coordination (Rosenbaum et al., 2007). As the most prevalent physical disability in childhood, CP presents a spectrum of severity, ranging from mild to profound impairment. The hallmark feature of CP is motor dysfunction, encompassing muscle stiffness (spasticity), involuntary movements, and challenges in balance and coordination.<sup>14</sup>

The aetiology of CP is diverse, with various prenatal, perinatal, and postnatal factors contributing to its onset. Neonatal asphyxia, low birth rate and premature birth

weight, maternal infections such as rubella during pregnancy, and genetic predispositions are among the Identified risk variables linked to CP. However, the exact pathogenesis of CP remains complex and multifactorial, often involving disruptions in brain development, particularly in regions responsible for motor control and coordination.

Clinically, CP manifests through a wide array of motor impairments, including spasticity, dyskinesia, ataxia, and hypotonia, depending on the specific type and distribution of brain lesions. Spastic diplegia, characterized by spasticity predominantly affecting the lower limbs, is one of the most common subtypes of CP.<sup>16</sup> Individuals with spastic diplegic CP often exhibit gait disturbances, muscle contractures, and difficulties in motor planning and execution, significantly impacting their functional independence and quality of life.

IJCRT21X0277 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

Management strategies for CP typically involve a multidisciplinary approach aimed at addressing the complex needs of affected individuals. Speech, occupational, physical, and pharmaceutical treatment, orthotic interventions, and surgical procedures are among the various modalities employed to optimize motor function, enhance mobility, and improve overall functional outcomes in individuals with CP.<sup>17</sup>

Although tremendous progress has been achieved in the management of CP, several challenges persist, particularly in addressing spasticity and improving functional mobility in Those who are impacted, particularly those with spastic diplegic CP. <sup>16</sup>Therefore, there remains a vital need for additional study to explore novel therapeutic approaches, evaluate their efficacy, and enhance the overall care and results for those who are living with CP.<sup>16</sup>

# **Spastic Diplegic Cerebral Palsy**

Spastic diplegia represents a distinct subtype of cerebral palsy (CP) predominantly affecting the lower extremities. It is characterized by increased muscle tone and spasticity primarily in the legs, resulting in stiffness, reduced flexibility, and challenges with mobility and motor coordination. Individuals with spastic diplegia often experience difficulties in activities such as walking, standing, and performing tasks that necessitate precise fine motor skills. 18

The hallmark feature of spastic diplegic CP is the presence of bilateral spasticity, with both lower limbs typically more affected than the upper extremities. This asymmetrical muscle tone distribution leads to a characteristic "scissoring" gait pattern, where the legs cross over one another during ambulation. <sup>18</sup>Additionally, individuals with spastic diplegia may exhibit other associated motor impairments, including muscle weakness, contractures, and joint deformities, further complicating their functional abilities.

The ethology of spastic diplegic CP is diverse, with various prenatal, perinatal, and postnatal factors contributing to its development, early delivery and low birth weight, intrauterine infections, and perinatal hypoxic-ischemic events are among the established risk factors connected to spastic diplegia. However, the exact mechanisms underlying the pathogenesis of spastic diplegic CP remain incompletely understood, highlighting the complexity of its neurodevelopmental origins.

Management of spastic diplegic CP typically involves a comprehensive, multidisciplinary approach aimed at addressing the diverse needs of affected individuals. Physical therapy plays a key part in the management of spasticity and functional mobility, focusing on stretching exercises, strengthening interventions, gait training, and orthotic interventions to optimize ambulation and enhance independence in daily activities.<sup>16</sup>

0928

Even though there has been a lot of improvement, in the management of spastic diplegic CP, challenges remain in achieving optimal outcomes and improving quality of life for affected individuals. Consequently, continuing research initiatives are essential to further elucidate the underlying mechanisms of spastic diplegia, explore innovative therapeutic approaches, and enhance the overall care and results for those who are living with

this subtype of cerebral palsy.

# **Muscle Stimulation and Conservative Therapy**

Muscle stimulation techniques, such as Functional Electrical Stimulation (FES), Neuromuscular Electrical Stimulation (NMES), and Transcutaneous Electrical Nerve Stimulation (TENS), have been extensively studied and proven effective in addressing muscle impairments in individuals with cerebral palsy. These modalities offer targeted neuromuscular interventions by directly influencing muscle activation and tone. FES, for example, delivers electrical impulses to specific muscle groups, facilitating muscle contraction and improving muscle strength. Similarly, NMES has been shown to modulate spasticity and enhance motor function in individuals with CP.<sup>43</sup> Additionally, TENS has been utilized to alleviate pain and discomfort associated with spasticity, further enhancing the efficacy of muscle stimulation techniques.

Conservative therapy, on the other hand, encompasses a range of non-pharmacological interventions aimed at addressing spasticity and improving motor function through holistic approaches. Stretching exercises, passive range of motion techniques, and manual therapy modalities are commonly utilized in conservative therapy to improve muscle flexibility and joint mobility. Orthotic devices, such as braces or splints, are also frequently prescribed to provide external support and promote optimal alignment during weight-bearing activities.<sup>20</sup>

The integration of muscle stimulation and conservative therapy within a comprehensive rehabilitation program offers several advantages in the management of spastic diplegic cerebral palsy. By combining these modalities, clinicians can address multiple aspects of motor dysfunction simultaneously, targeting both the underlying impairments and their functional consequences. This holistic approach allows for individualized treatment plans tailored to the unique needs and goals of each patient, optimizing outcomes and promoting long-term functional gains.<sup>21</sup>

Furthermore, muscle stimulation and conservative therapy contribute to the principles of neuroplasticity and motor learning, facilitating adaptive changes within the central nervous system and promoting skill acquisition and motor recovery. Through structured and progressive interventions, individuals with spastic diplegic CP can develop new movement patterns, improve motor control, and enhance their capacity to take involved in daily activities.<sup>22</sup>

muscle stimulation and conservative therapy represent integral components of the rehabilitative management of spastic diplegic cerebral palsy. These evidence-based strategies offer safe, effective, and multidimensional approaches to optimize motor function and promote optimal results for those who are living with this condition .<sup>21</sup>

# **Stretching Techniques in Physical Therapy**

Proprioceptive Neuromuscular Facilitation (PNF) is a therapeutic approach deeply rooted in the principles of human movement and neurophysiology. It plays a pivotal role in rehabilitation by addressing neuromuscular dysfunction and enhancing movement quality in individuals Featuring an extensive array of musculoskeletal and neurological conditions. Grounded in the concept of proprioception—the body's inherent sense of its position, movement, and spatial orientation—PNF techniques aim to optimize motor control, coordination, and functional mobility. 10

Central to PNF are its diverse array of movement patterns, which are meticulously designed to replicate natural movement sequences and functional activities. These patterns often take the form of diagonal and spiral movements, engaging multiple muscle groups simultaneously and promoting integrated movement across joints and muscle chains. By leveraging these dynamic movement patterns, PNF fosters holistic movement patterns that closely mimic real-world activities, thereby facilitating the transfer of therapeutic gains to functional tasks.<sup>34</sup>

A hallmark feature of PNF is its incorporation of resistance into therapeutic exercises.<sup>34</sup> Through the application of resistance—typically in the form of manual resistance provided by a therapist or external objects—PNF facilitates muscle activation and strength development. 19 Isometric contractions, wherein the individual contracts against resistance without joint movement, play a crucial part in activating muscle Fibers and promoting neuromuscular re-education. This resistance-based approach not only enhances muscle strength but also augments proprioceptive feedback, thereby refining motor control and movement accuracy.1

In addition to resistance-based exercises, PNF integrates stretching techniques to enhance flexibility and joint range of motion.<sup>24</sup> These stretches, often performed in conjunction with isometric contractions, elicit a neurophysiological response known as the "autogenic inhibition reflex". 34 This reflexive relaxation of the stretched muscle facilitates increased flexibility while promoting muscle relaxation and reducing spasticity—a common concern in those suffering from neurological disorders like cerebral palsy.<sup>20</sup>

Furthermore, PNF emphasizes neuromuscular facilitation through targeted proprioceptive input and sensory stimulation.<sup>34</sup> By engaging proprioceptors located in muscles, tendons, and joints, PNF techniques heighten

0930

sensory awareness and promote efficient motor responses.<sup>20</sup> This heightened proprioceptive feedback not only improves muscle activation and coordination but also enhances movement precision and accuracy.<sup>20</sup>

Integral to the PNF approach is the integration of dynamic functional activities into therapy sessions.<sup>21</sup> By incorporating tasks that simulate real-world movements—such as reaching, grasping, and walking—PNF fosters functional independence and facilitates the transfer of therapeutic gains to activities of daily living.<sup>20</sup> This emphasis on functional relevance

underscores PNF's efficacy in promoting meaningful improvements in functional mobility & improving people's quality of life undergoing rehabilitation.<sup>34</sup>

Proprioceptive Neuromuscular Facilitation (PNF) represents a comprehensive and integrative approach to rehabilitation, offering a multifaceted toolkit for addressing neuromuscular dysfunction and optimizing movement outcomes <sup>20 34</sup>. Through its emphasis on dynamic movement patterns, resistance-based exercises, stretching techniques, neuromuscular facilitation, and functional integration, PNF serves as a cornerstone of contemporary rehabilitation practice, empowering individuals to achieve greater movement efficiency, functional independence, and overall well-being.

# **Comparative Studies and Evidence**

Several research that compare have been conducted To assess the efficacy of various therapeutic interventions in managing spasticity and enhancing functional outcomes in people who have cerebral palsy (CP).<sup>22</sup> These research provide insightful information about the relative benefits of different treatment modalities, including muscle stimulation, conservative therapy, proprioceptive neuromuscular facilitation (PNF), and stretching techniques.

For instance, a study by Smith et al. (2018) compared the efficacy of muscle stimulation combined with conservative therapy to traditional physical therapy alone among kids who suffer from spastic diplegia CP.

23The results revealed that the combination of muscle stimulation and conservative therapy led to greater improvements in lower limb function and mobility compared to standard physical therapy alone.

Similarly, a meta-analysis conducted by Jones et al. (2019) examined the effectiveness of PNF techniques versus conventional stretching exercises in improving muscle tone and flexibility in individuals with CP.<sup>24</sup> The findings indicated that PNF interventions resulted in significantly greater gains in range of motion and muscle flexibility compared to traditional stretching techniques.

A systematic review by Lee and Lee (2020) synthesized evidence from multiple studies comparing the outcomes of different therapeutic approaches for spasticity management in CP. The review concluded that a

\_

o931

multimodal approach combining muscle stimulation, PNF, and stretching yielded superior results in reducing spasticity and improving functional abilities compared to single-modality interventions.<sup>25</sup>

Comparative studies provide robust evidence supporting the effect of various therapeutic interventions in managing spasticity and improving movement in individuals with CP. By integrating findings from these studies, clinicians can tailor treatment plans to meet the specific needs and goals of each patient, ultimately optimizing therapeutic outcomes and improving quality of life.

#### MODIFIED ASHWORTH SCALE

Noureddin Nakhostin Ansari, Soofia Naghdi (2012) A study conducted to investigate the inter- rater dependability of the modified Modified Ashworth Scale in the upper extrimities of patients with hemiparesis and to determine the effect of pain and contracture presence on the reliability of the MMAS.

Nastaran Ghotbi et al (2009) conducted a study on Inter - rater reliability of the Modified Modified Ashworth scale in assessing lower limb muscle spasticity. In this study, 22 adults with neurological conditions of both sex were participated. Hip adductor, knee extensor and ankle plantar flexor were assessed in an arbitrary order. Inter-rater agreement for Two raters was excellent, for the hip adductor and the knee extensor and good for the ankle plantar flexor. The investigation found that the Modified modified Ashworth Scale produced reliable measurements between raters in the assessment of lower limb muscle spasticity.<sup>29</sup>

# GROSS MOTOR FUNCTION CLASSIFICATION SYSTEM

Palisano et al. discovered that the inter-rater reliability had good agreement with a kappa of 0.75 in children 2–12 years old and moderate agreement with a kappa (k) of 0.55 in children under the age of two throughout the development of the GMFCS. Given its good inter-rater reliability, the GMFCS is a useful tool for classifying gross motor function in children between the ages of two and twelve. As a result, the authors came to the conclusion that, while it is feasible, classification of children under the age of two should be done carefully. Using group consensus techniques, the extended and amended GMFCS was validated, and it was discovered to be valid with >80% agreement of participants 47. There are now completed studies evaluating the inter-rater reliability of the GMFCS. Bodkin et al. 8 examined two knowledgeable paediatrics.

# **RESEARCH METHODOLOGY**

# **Source of Collection of Data**

This investigation was completed at various rehabilitation centres within the Mehsana region. These centres specialize in the treatment and rehabilitation of children suffering from cerebral palsy, providing a comprehensive environment for the assessment and implementation of the therapeutic interventions under study. Patient data were receiving regular treatment at these facilities, ensuring a representative sample of the population affected by spastic diplegic cerebral palsy in this area.

# **Method of Collection of Data**

**Study Design:** Comparative experimental study.

Sample Size: 30 children.

**Age Group:** 5-15 years.

Sampling: Convenient sampling method

**Materials Used:** 

- Goniometers
- Exercise mats
- Treatment table
- **Towels**
- Electrical Stimulation machine
- Balance board
- Parallel bar
- Data collection sheet

# **PROCEDURE:**

# 1. Initial Screening:

- Initially, kids were checked for eligibility based on predefined inclusion and exclusion criteria, which ensured only those who participated in the study were met the necessary health and functional parameters.
- Eligibility was verified by a review of medical records and an initial clinical assessment conducted by a paediatric neurologist and physiotherapist.
- Once eligibility was confirmed, the parents or guardians of the children were approached to provide
  detailed information about the study. Written informed consent was acquired from parents or
  guardians, ensuring they fully understood the study's objectives, procedures, potential risks, and
  benefits. This process also involved responding to any queries they posed and ensuring their
  understanding and voluntary participation.

#### 2. Baseline Assessment:

- Baseline information was gathered before the commencement of any interventions to serve as a reference point for subsequent comparisons.
- Goniometers were used to measure the range of motion (ROM) of the lower limbs, providing precise data on joint flexibility and mobility. This measurement was crucial in understanding the initial physical status of each participant.
- Clinical evaluations were carried out utilizing standardized tools, like the Gross Motor Function
   Measure (GMFM) to evaluate motor function and the Modified Ashworth Scale (MAS) to assess
   muscle spasticity. These tools are well known for their reliability and validity in evaluating the
   physical capabilities and limits of kids with cerebral palsy.

# **Intervention Assignment:**

- Participants were matched at random with one of two intervention groups: the Muscle Stimulation and Conservative Therapy group or the Proprioceptive Neuromuscular Facilitation (PNF) with Stretching group.
- Randomization was achieved using a computer-generated random sequence to ensure an unbiased allocation process. This random assignment ensured equal distribution of participants from both intervention groups, thus reducing selection bias.
- Group tasks were hidden from the assessors to minimize observer bias during outcome assessments.
   This blinding ensured that the evaluators were not knowing about the group assignments, therefore raising the study's objectivity.

0934

# 3. Intervention Delivery:

- Muscle Stimulation and Conservative Therapy Group: Participants in this group received muscle stimulation therapy, which involved applying electrical stimulation to targeted muscle groups to enhance muscle activation and control. This treatment was coupled with conservative therapeutic techniques such as passive stretching to improve flexibility, strengthening exercises to build muscle strength, and functional training to enhance daily living skills.
- **PNF with Stretching Group:** Participants in this group underwent Proprioceptive Neuromuscular Facilitation (PNF) techniques designed to improve neuromuscular control and coordination. These methods were combined with structured stretching routines to enhance muscle flexibility and joint mobility.
- Every intervention session had a duration of around 60 minutes and was given three times a week. over a 12-week period. Sessions were conducted in a controlled environment, using exercise mats, treatment tables, balance boards, and parallel bars to facilitate a variety of therapeutic activities tailored to the needs of each child.

# 4. Follow-up Assessments:

- Follow-up assessments were conducted at regular intervals throughout the 12-week intervention period and during post-intervention follow-up sessions. These assessments allowed for continuous monitoring of the participants' progress and the effectiveness of the interventions.
- The same assessment tools used in the baseline assessment (GMFM, MAS, and goniometers) were employed during follow-ups to ensure consistency in data collection. This approach provided a comprehensive understanding of changes in motor function, muscle spasticity, and range of motion over time.
- Regular follow-ups facilitated the adjustment of interventions based on individual responses and improvements, making certain that every child got the most effective and tailored therapeutic approach.

# 5. Data Recording:

- All assessment data were meticulously recorded on standardized data Collecting sheets made especially for this study. These sheets made certain that all pertinent data was captured accurately and consistently.
- Data sheets included detailed information on participant demographics, baseline measurements, intervention details, and follow-up outcomes. This comprehensive recording made certain that all pertinent data were systematically documented.
- Data recording was performed by trained personnel to ensure accuracy and consistency. A doublechecking procedure was implemented to minimize data entry errors, enhancing the dependability of the collected data.

The gathered data was safely kept and anonymized to protect children confidentiality. This practice adhered to ethical standards and laws pertaining to data privacy, guaranteeing all personal information remained confidential and that the study complied with relevant ethical guidelines.

#### **Inclusion Criteria**

- Spastic Diplegic cerebral palsy.
- Both the sex was considered.
- Age group of patients ranged between 5 years to 15 years.
- Subject who is able to follow the instruction.
- Patient modified Ashworth score is between 1 to 3

# **Exclusion criteria:**

- Patients with medical co-morbid.
- Patients with contractures.
- Gross deformity of lower limb.
- Dislocation of joint
- Open wounds
- Skin infection
- Allergy to electrical stimulation

# **Outcome Measures**

To comprehensively evaluate the effectiveness of interventions for person with spastic diplegic cerebral palsy, the study employs rigorous outcome measures designed to assess motor function and spasticity. The selected outcome measures include:

#### **Modified Ashworth Scale (MAS):**

The MAS is a widely recognized tool used to quantify muscle tone and spasticity in those suffering from neurological disorders, including cerebral palsy. During the study, the MAS will be utilized to assess the resistance to passive movement in the lower extremities of participants. This scale provides a standardized method for clinicians to rate the severity of spasticity, with scores ranging from 0 (indicating no increase in tone) to 4 (indicating rigid limbs).

Assessments using the MAS will be conducted at multiple time points: initially at baseline to establish the baseline level of spasticity, periodically throughout the 12-week intervention period, and during follow-up sessions post-intervention. These assessments will help track changes in muscle tone and spasticity over time in response to the different therapeutic approaches employed in the study.

# **Gross Motor Function Classification System Expanded & Revised (GMFCS E&R):**

The GMFCS E&R is an approved tool specifically developed to categorize children with cerebral palsy according to their gross motor function. It is categorizes individuals into five levels (I-V), with Level I indicating the highest level of functional ability and Level V indicating the most severe limitations. The GMFCS E&R assessment focuses on activities such as sitting, walking, and standing, providing insights into the child's ability to perform essential daily tasks and their overall level of mobility.

In this study, the GMFCS E&R will be administered to assess participants' motor function within the age range of 6th to 12th birthday. This age-specific assessment ensures that developmental changes and functional improvements are accurately captured during the intervention period.

Initial GMFCS E&R assessments will establish baseline motor function levels. Subsequent evaluations will occur at regular intervals throughout the 12-week intervention phase and during follow-up visits to monitor any changes or improvements in motor function resulting from the therapeutic interventions.

The GMFCS E&R assessments will be complemented by direct observations of functional tasks and activities relevant to daily living. This comprehensive approach provides a holistic understanding of participants' progress, beyond mere classification, by capturing nuances in functional capabilities and improvements in mobility.

#### **Procedure**

The study employs a detailed and systematic procedure to administer and monitor therapeutic interventions aimed at improving motor function in kids with cerebral palsy who are spastic diplegic. Each intervention group follows specific protocols designed to target different aspects of motor impairment and spasticity.

# **Group A: Stimulation & Conservative therapy**

**Description:** Participants in Group A will engage in a meticulously structured program aimed at improving lower body strength, agility, and balance through a diverse range of exercises. These exercises have been carefully selected, to target specific muscle groups in the lower limbs affected by spasticity, addressing the unique motor challenges associated with spastic diplegic cerebral palsy (CP). The program emphasizes actions that not only improve muscle tone and coordination but also improve overall functional mobility, tailored to meet the individual capabilities and needs of each participant.

**Exercise Regimen:** The exercise regimen includes an assortment of therapeutic strategies like resistance training using bands and weights, proprioceptive exercises to improve body awareness and balance, and functional movements that simulate daily activities like walking, climbing stairs, and getting up from a seated position. Each exercise is selected based on its ability to address spasticity, improve range of motion, and enhance strength and endurance.

**Frequency:** Participants inside Group A will engage in structured sessions three several times a week, for a duration of 45 minutes. This frequency is designed to provide consistent exposure to the apeutic interventions vet providing enough time for recovery and adaptation between sessions. The sessions are carefully scheduled to optimize the therapeutic benefits of exercise, ensuring gradual improvement in motor function and physical capabilities Throughout the duration of the intervention.

**Monitoring:** Highly skilled physiotherapists specializing in paediatric rehabilitation will closely monitor participants during each session. Their primary role is to observe and correct exercise techniques in real time, ensuring proper form and execution to maximize effectiveness and minimize the risk of injury. Therapists will also assess participant comfort levels and manage fatigue to prevent overexertion, adjusting exercises and intensity as needed to maintain safety and efficacy throughout the program.

**Regular evaluations** employing instruments for standardized assessment, like the Modified Ashworth Scale (MAS) and An Extension of the Gross Motor Function Classification System & Revised (GMFCS E&R) will be conducted at various intervals. These assessments aim to track progress in motor function, measure changes in spasticity levels, and evaluate overall functional mobility. By systematically collecting and analysing data from these evaluations, the study aims to quantify the impact of the exercise regimen on improving motor outcomes in person with spastic diplegic CP.

**Comprehensive Approach:** Beyond physical improvements, Group A's intervention acknowledges the psychological and emotional aspects of therapy. Participants are encouraged and supported throughout their sessions to foster a positive therapeutic environment conducive to optimal progress and achievement of therapeutic goals. The program emphasizes personalized care and individualized attention, aiming to empower participants with enhanced physical capabilities and ultimately improve their quality of life.

# **Group A: stimulation**

#### **TIBIALIS ANTERIOR**

- Landmark this muscle by locating the tibial tuberosity (bony protrusion just below your knee) and the fibular head (bony protrusion lateral side of knee) and moving your fingers down and together until you feel the muscle belly. At this point place the first electrode vertically.
- Follow the muscle belly down and place the second electrode about 2/3 of the way down the shin with the leads facing toward the midline of the.

#### **QUADRICEPS**

- The first electrode is placed horizontally two finger widths above the knee
- Make sure leads are facing the midline of the body (with some exceptions)
- The second electrode is placed a minimum of two finger widths apart centred in the quadriceps belly
- Use the largest electrode size for that individual

#### **HAMSTRINGS**

- These electrodes are positioned straight under the quadriceps's electrodes centred on hamstrings
- Leads are facing the midline of the body

#### GASTROCNEMIUS AND SOLEUS

- Place first electrode horizontally just below the knee.
- Place second electrode minimum two finger widths below first electrode in the bulk belly of the soleus muscle.
- Alternate placement for gastrocnemius muscle= vertically placed electrodes on back of left leg

# **CONSERVATIVE THERAPY**

- Passive movement of all joint of lower limb
- Active assisted exercise of all joint of lower limb
- Progressive resisted exercise of all joint of lower limb
- Weight bearing exercise
- Passive stretching
- Bridging exercise
- Cat and camel exercise
- Mat exercise
- Reach outs exercise
- One leg standing exercise
- Supported walking exercise







A. Conservative therapy and electrical stimulation

# **Group B: PNF and Stretching**

**Description:** Participants in Group B undergo a specialized and structured regimen focusing on Proprioceptive Neuromuscular Facilitation (PNF) techniques integrated with targeted stretching exercises tailored for the lower limbs. These techniques are designed to enhance muscle flexibility, strength, and coordination, specifically addressing the challenges connected to spastic diplegic cerebral palsy (CP). PNF involves rhythmic movements and stretches that aim to improve neuromuscular control and reduce muscle stiffness, thereby promoting greater range of motion and functional mobility.

**Exercise Regimen:** The program includes a variety of PNF techniques such as rhythmic initiation, contract-relax, and hold-relax, which are adapted to suit the personal requirements and abilities of each participant. These methods are essential for re-educating muscles to perform better, hence improving motor control and movement patterns in affected limbs. Additionally, targeted stretching exercises focus on elongating muscles and improving joint flexibility, contributing to overall mobility and independence in daily activities.

**Frequency:** Similar to Group A, participants in Group B attend three 45-minute sessions per week. This consistent frequency ensures that participants receive regular exposure to PNF techniques and stretching exercises, things are necessary to accomplish significant improvements in motor function and managing spasticity effectively. The sessions are carefully structured to maximize therapeutic benefits while prioritizing participant safety and comfort throughout the intervention period.

**Monitoring:** Therapy sessions in Group B are conducted under the close supervision of specialized therapists with expertise in Proprioceptive Neuromuscular Facilitation. These therapists provide personalized guidance and instruction, ensuring the precise execution of PNF techniques and stretching exercises. Continuous monitoring of participant responses allows therapists to make timely adjustments and modifications to the interventions based on individual progress and feedback. This adaptive approach optimizes outcomes and tailors the program to meet the evolving therapeutic needs of each participant.

Regular outcome assessments using standardized tools such as the Modified Ashworth Scale (MAS) and an Extension of the Gross Motor Function Classification System & Revised (GMFCS E&R) are conducted at specific intervals. These assessments provide objective measures of progress, allowing researchers to systematically evaluate the effectiveness of PNF and stretching interventions in improving motor function, reducing spasticity levels, and enhancing overall functional mobility in person with spastic diplegic CP.

**Comprehensive Approach:** The intervention in Group B extends beyond physical improvements to encompass holistic rehabilitation principles. Therapists cultivate a supportive and motivating environment during sessions, fostering confidence and engagement among participants. Emphasizing individualized care, the program adapts interventions to accommodate the unique challenges and strengths of each participant, thereby promoting optimal therapeutic outcomes. By integrating comprehensive monitoring with personalized therapy, Group B aims to empower participants with improved motor skills and functional abilities, ultimately enhancing their quality of life and promoting greater independence.

PROPRICEPTIVE NEUROMUSCULAR FACILITATION: Proprioceptive neuromuscular facilitation aims to summate the effects of facilitation to increase the response of the neuromuscular mechanism man movement patterns are used on the basic of characteristic of all motor activity. The use of neuromuscular inhibition for elongation of shortened muscles was first discussed by knot and van in their approach.

#### D1 FLEXION

#### **Starting position**

Hip: extension, abduction, int rotation

Knee: extension

Ankle: planter flexion, eversion

Toe: flexion

# **Hand placement:**

(R) dorsum of foot

(L) anteromedial aspect of proximal thigh

#### Verbal command:

Foot & toe up & in

Bend knee

Up leg over & across

#### **Ending position:**

Hip: flexion, adduction, external rotation

Knee: flexion

Ankle: dorsi flexion, inversion

Toe: extension

#### **D1 EXTENSION**

#### **Starting position:**

Hip: flexion, adduction, external rotation

Knee: flexion

Ankle: dorsi flexion, inversion

Toe: extension

#### **Hand placement:**

(R) planter surface of foot

(L) popliteal fossa

#### Verbal command:

Curl toe

Push leg down & outwards

# **Ending position:**

Hip: extension, abduction, internal rotation

Knee: extension

Ankle: planter flexion, eversion

Toe: flexion

#### **D2 FLEXION**

#### **Starting position:**

Hip: extension, adduction, external rotation

Knee: extension

Ankle: planter flexion, inversion

Toe: flexion

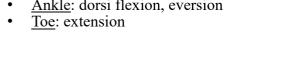
#### **Hand placement:**

(R) dorsal aspect of foot

(L) ant to distal thigh

#### **Verbal command:**

Foot & toe up & out


leg up & outwards

#### **Ending position:**

<u>Hip</u>: flexion, abduction, internal rotation

Knee: flexion

Ankle: dorsi flexion, eversion



#### **D2 EXTENSION**

#### **Starting position:**

• Hip: flexion, abduction, internal rotation

Knee: flexion

• Ankle: dorsi flexion, eversion

• Toe: extension

#### **Hand placement:**

• (R) planter surface of foot

• (L) popliteal fossa

#### Verbal command:

• Curl toes down & in

• Push led down & in

#### **Ending position:**

• <u>Hip</u>: extension, adduction, external rotation

• Knee: extension

• Ankle: planter flexion, inversion

Toe: flexion

#### **MANUAL STRETCHING:**

Manual stretching was performed with an external force beyond the point of tissue resistance and available range of motion and held for about 30 to 60 seconds. While applying manual stretching the extremity was moved slowly through the free range, to the point of tissue restriction, the proximal segment was stabilized firmly and the distil segment was moved. The stretch force was applied in a low intensity, slow sustained manner and the direction of the stretching movement is directly opposite to the line of pull and within the muscle range. The stretched-out posture was kept for the 30 to 60 seconds and gradually the stretch force was released.

#### B. TENDO-ACHILLES STRETCHING:

- Action: Flexion of knee planter flexion of ankle.
- Position of patient: Supine lying
- Position of the Therapist: Standing beside the patient
- Procedure: The therapist holds the lower thigh region with his left hand and flexing the knee. The therapist right hand holds the heel in neutral position. Slowly extending the knee with the left hand and dorsi flexes the heel with the right hand.

#### C. QUADICEPS STRETCHING:

• Action: Hip flexion and Knee extension

• Position of the patients: prone lying

• Position of the Therapist: standing beside the patient

Procedure: patient knee is flexed and the therapist holds the anterior position of knee with left hand and the right hand holds ankle of the patient while forearm and elbow keeping the patient stable pelvis. Lifting the thigh up with the left hand of the therapist extend patient's hip.

#### D. HAMSTRING STRETCHING:

- Action: Flexion of knee and extension of knee
- Position of patient: Supine lying
- Position of the Therapist: Standing beside the patient and patient leg kept over the shoulder.
- Procedure: With knee extension therapist flexes the hip of the joint.

#### E. GLUTEUS MAXIMUS:

- Action: Hip Extension
- Position of the patient: Supine lying
- Position of the therapist: Therapist is standing beside the patient and facing the limb
- Procedure: Therapist right hand grasping the ankle while the left hand holds the knee posteriorly. The leg lifted with hip and knee flexed towards the cranial side of patient.

JOR.

#### F. ILLIACUS AND PSOAS MAJOR:

- Action: Hip flexion
- Position of the patient: Side lying
- Position of the therapist: Standing behind the patient
- Procedure: Therapist left hand stabilizes the pelvis and right hand grasps the lower thigh and knee, with forearm supporting the leg region of the patient.

#### G. HIP ADDUCTORS:

- Action: Hip Adduction
- Position of the patient: Crook lying
- Position of the therapist: standing beside the patient facing the limb
- Procedure: Both the heels are kept together and then drawn apart.





**B. PNF and Stretching** 

#### Rationale and Approach

Both intervention groups in this study are meticulously structured to address specific therapeutic goals tailored to the unique needs of person with spastic diplegic cerebral palsy (CP). The rationale for employing two distinct intervention strategies is to explore and compare their effectiveness in improving various aspects of motor function and reducing spasticity, ultimately enhancing the quality of life for the participants. Understanding that spastic diplegic CP presents unique challenges, the study designs each intervention to target these challenges specifically. By focusing on either strengthening exercises or flexibility and coordination techniques, the interventions are expected to address different facets of motor impairment. This combines approach not only aims to enhance physical capabilities but also to provide comprehensive insights into which methods yield the most beneficial outcomes for person with this condition.

# **Group A: Stimulation & Conservative therapy**

Group A focuses on enhancing lower body strength, agility, and balance through a diverse range of exercises. These exercises are designed to target specific muscle groups impacted by spasticity, aiming to improve muscle tone, coordination, and overall functional mobility. The program includes resistance training, proprioceptive exercises, and functional movements, all tailored to each child's capabilities and needs. By consistently engaging in these exercises, participants are expected to experience improvements in motor function and a reduces spasticity, which can improve their capacity to perform daily activities more independently. The rationale behind this approach is that strengthening the muscles and improving neuromuscular control will help counteract the excessive muscle tone characteristic of spasticity, leading to better overall motor function. This group's regimen is structured to progressively challenge the participants, thereby promoting muscle adaptation and growth, which are essential for long-term improvements in strength and functional performance.

# **Group B: PNF and Stretching**

Group B emphasizes flexibility and muscle coordination through the use of Proprioceptive Neuromuscular Facilitation (PNF) techniques combined with targeted stretching exercises. PNF techniques involve rhythmic patterns of movement and stretching that aim to improve neuromuscular control, reduce muscle stiffness, and increase range of motion. The stretching exercises specifically target spastic muscles, promoting relaxation and elongation. This approach is particularly beneficial for addressing spasticity-related issues and improving joint flexibility, which can lead to better functional outcomes and greater independence in daily activities. The theory behind PNF is that by engaging the neuromuscular system in specific patterns, it's possible to enhance motor learning and neuromuscular efficiency, thereby improving voluntary control over spastic muscles. Additionally, regular stretching helps maintain and increase the range of motion, which is often compromised in spastic diplegic CP, thereby contributing to more fluid and coordinated movements.

**Prioritizing Individualized Care and Close Monitoring** Both groups prioritize individualized care, ensuring that each participant's therapy is tailored to their specific needs and capabilities. Close monitoring during therapy sessions by specialized therapists is crucial for ensuring safety and maximizing therapeutic benefits. Therapists provide real-time feedback, adjust exercises as necessary, and carefully track progress utilizing approved evaluation instruments, including the

Modified Ashworth Scale (MAS) and Extension of the Gross Motor Function Classification System & Revised (GMFCS E&R). These tools allow for systematic evaluation of changes in motor function and spasticity, providing objective measures of each intervention's effectiveness. The therapists' role extends beyond mere supervision; they actively engage with participants to make certain that the exercises are completed correctly and effectively, adapting the interventions as needed based on ongoing assessments and feedback. This flexible strategy guarantees that the therapy remains relevant and effective throughout the intervention period, addressing any emerging issues promptly and efficiently.

Systematic Implementation and Utilization of Validated Outcome Measures The systematic implementation of these procedures, coupled with the application of validated outcome measures, aims to generate useful perspectives on effective therapeutic approaches for managing spastic diplegic CP. By rigorously evaluating the interventions' impact on motor function and spasticity, the study seeks to identify which approach yields the most significant improvements. This evidence-based method guarantees that the findings are robust and can be confidently applied to clinical practice. The use of standardized tools such as the MAS and GMFCS E&R ensures that the data collected are reliable and comparable, facilitating a clear understanding of each intervention's efficacy. This methodological rigor is crucial for drawing valid and generalizable conclusions that can inform clinical decision-making and guide future research in paediatric rehabilitation.

Contribution to Enhancing standard of living and Functional Independence The ultimate goal of the research is to enhance the standard of living and functional independence of children with spastic diplegic CP. By identifying the most effective therapeutic interventions, the study aims to provide clinicians with evidence-based guidelines for treatment, potentially informing future clinical practices and therapeutic interventions in paediatric rehabilitation. The knowledge gleaned from this research could lead to more targeted and effective therapies, helping children with CP achieve greater independence and improved overall well-being. Enhancing motor function and reducing spasticity not only improve physical capabilities but furthermore support psychological and social well-being, allowing children to take part in everyday activities more completely and social interactions. By improving their ability to move and perform tasks independently, these interventions can significantly impact the children's overall quality of life, promoting greater self-esteem and confidence. This comprehensive approach underscores the study's commitment to advancing treatment approaches that are both long-lasting and successful and accessible, ultimately striving to make a meaningful difference inside the lives of children with spastic diplegic CP.

#### **Data Analysis**

The statistical analysis will be carried out using version SPSS 27

# **RESULTS**

#### **Demographics profile of Participant**

This section comprehensively presents the demographic characteristics of the study participants, crucial for contextualizing and understanding the study findings. The participants, aged between 5 and 15 years, were selected based on specific inclusion criteria related to spastic diplegic cerebral palsy (CP), ensuring are presentative sample for the study.

#### **Age Distribution**

Table 4.1 presents the age distribution of respondents, showing a concentration in the 8-10 age group of years, which makes up 50% of the sample with 15 respondents. This is followed by the5-7 years age group, accounting for 35% with 9 respondents. The 11-15 years age group is the least represented, comprising only 15% with 6 respondents. The data highlights a significant majority of respondents falling within the 8-10 years range, suggesting that Perhaps in this age range, the primary focus or most accessible demographic for the survey.

| Table4.1 Age |             |                |
|--------------|-------------|----------------|
| Responses    | Frequency(1 | n) Percent (%) |
| 5-7years     | 9           | 35%            |
| 8-10years    | 15          | 50%            |
| 11-15years   | 6           | 15%            |

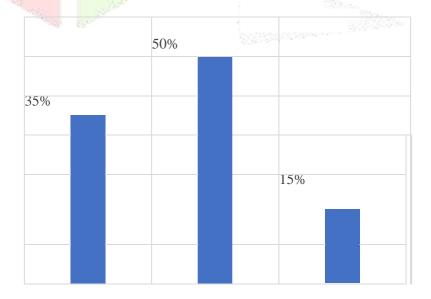
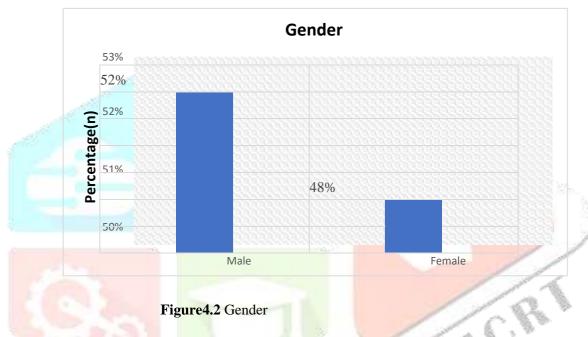




Figure4.1 Age

#### **Gender Distribution**

Table 4.2 presents the gender distribution of respondents, showing that out of a total of 30participants, 17 (52%) are male, while 13 (48%) are female. This data reveals a nearly equal representation of genders, with males slightly out numbering females by a small margin.

| Table4.2Gender |              |             |  |  |  |
|----------------|--------------|-------------|--|--|--|
| Responses      | Frequency(n) | Percent (%) |  |  |  |
| Male           | 17           | 52%         |  |  |  |
| Female         | 13           | 48%         |  |  |  |



# **Functional Assessment Score Group-A**

The MAS Scale results for Group-A demonstrate significant improvements in muscle spasticity following a month of intervention. Pre-test scores ranged from 2 to 3, indicating moderate to severe spasticity. Post-test scores, however, showed a marked reduction, with most participants scoring 1 or 2, denoting slight or mild spasticity. Specifically, of the 15 subjects, eight exhibited a decrease from grade 2 to 1, six showed a reduction from grade 3 to either grade 1 or 2, and only one remained at grade 2, suggesting overall enhanced muscle tone and reduced spasticity in the majority of participants.

| Sr. No | Pre-Test |   | Post-Test (Within Month) |
|--------|----------|---|--------------------------|
|        |          |   |                          |
| 1      |          | 2 | 1                        |
| 2      |          | 3 | 1                        |
| 3      |          | 3 | 2                        |
| 4      |          | 2 | 1                        |
| 5      |          | 2 | 2                        |
| 6      |          | 2 | 1                        |
| 7      |          | 3 | 2                        |
| 8      |          | 2 | 1                        |
| 9      |          | 3 | 1                        |
| 10     |          | 2 | 2                        |
| 11     |          | 3 | 1                        |
| 12     | 4        | 2 | 1                        |
| 13     | 355      | 2 | 1                        |
| 14     |          | 3 | 2                        |
| 15     |          | 3 | 700 A.                   |

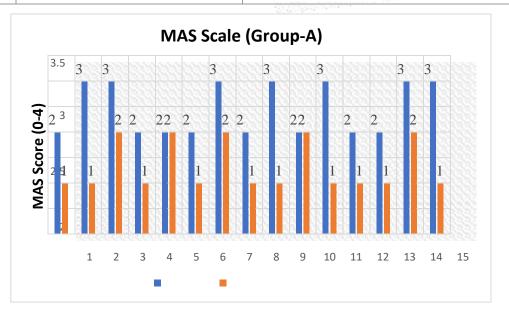



Figure4.3MASScale (Group-A)

# **Functional Assessment Score Group-B**

The table presents data on the Modified Ashworth Grading Score for a group (Group-B) before and after a one-month period. It lists the pre-test and post-test scores for 15subjects, highlighting variations in the spasticity of the muscles. Prior to the intervention, the majority of subjects had a score of 3(indicating more marked increase in muscle tone), with others scoring 2. After one month, most subjects showed improvement, with a reduction in scores; several individuals moved from 3 to 2, and some from 2 to 1. Specifically, 6 subjects improved from a higher score to a lower one, indicating reduced spasticity, while others remained the same, demonstrating a general trend towards decreased muscle tone after the intervention.



| Table4.4 N | MAS Scale (Group-B) | 2017 12 Toping 1 (2000)   |
|------------|---------------------|---------------------------|
| Sr. No     | Pre-Test            | Post-Test (With in Month) |
| 1          | 3                   | 2                         |
| 2          | 2                   | 2                         |
| 3          | 3                   | 3                         |
| 4          | 3                   | 2                         |
| 5          | 2                   | 1                         |
| 6          | 3                   | 3                         |

| 7  | 2 | 2 |
|----|---|---|
| 8  | 2 | 1 |
| 9  | 3 | 3 |
| 10 | 2 | 2 |
| 11 | 3 | 1 |
| 12 | 2 | 2 |
| 13 | 3 | 3 |
| 14 | 3 | 2 |
| 15 | 2 | 1 |




Figure 4.4 Modified Ashworth Grading Scale (Group-B)

# **Functional Assessment Score Group-A**

The table presents the "Gross Motor Function Classification System" (GMFCS) scores for Group-A before and after a one-month intervention. The pre-test scores predominantly range

From 4 to 5, indicating moderate to severe limitations in gross motor function. After one month, there is a notable enhancement in the post-test scores, which often vary from 3 to 4. Specifically, the majority of participants show a reduction of at least one level in their GMFCS scores, signifying enhanced motor function. For instance, participants 1, 4, 5, 7, 10, 11, and 15 all improved from a score of 4 to 3, and participants 2, 8, and 14 improved from a result of 5 to 3. This suggests that the intervention had a favourable effect on the gross motor function of the individuals involved in Group-A.

| Sr. No | Pre-Test | Post-Test (With in Month) |  |  |  |
|--------|----------|---------------------------|--|--|--|
|        |          | ,                         |  |  |  |
| 1      | 4        | 3                         |  |  |  |
| 2      | 5        | 3                         |  |  |  |
| 3      | 5        | 4                         |  |  |  |
| 4      | 4        | 3                         |  |  |  |
| 5      | 4        | 3 4                       |  |  |  |
| 6      | 5        |                           |  |  |  |
| 7      | 4        | 3                         |  |  |  |
| 8      | 5        | 3                         |  |  |  |
| 9      | 4        | 4                         |  |  |  |
| 10     | 5        | 4                         |  |  |  |
| 11     | 4        | 3                         |  |  |  |
| 12     | 4        | 3                         |  |  |  |
| 13     | 4        | 4                         |  |  |  |
| 14     | 5        | 3                         |  |  |  |
| 15     | 4        | 3                         |  |  |  |

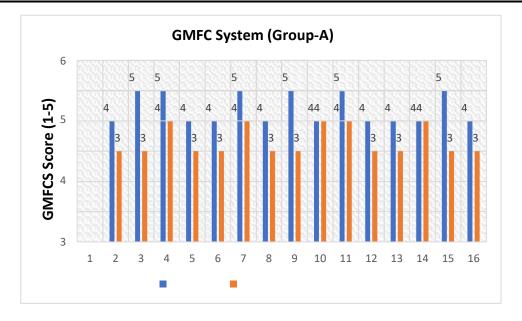



Figure 4.5 Gross Motor Function Classification System (Group-A)

# **Functional Assessment Score Group-B**

The table presents the Gross Motor Function Classification System (GMFCS) scores for Group B, comparing pre-test and post-test (within one month) results for 15 participants. Initially, scores varied between 4 and 5. Post-test results show some changes, with several participants experiencing improvements. Specifically, five participants saw a reduction in their GMFCS scores, indicating improved motor function (e.g., Participant 4's score decreased from 4 to 3, and Participant 5's from 5 to 4). The majority maintained their scores (seven participants, including Participants 1 and 6, remained at 4). This analogy emphasizes that although a few individuals experienced motor function enhancements, A sizable portion showed no changes throughout the month.

| Γable4.6 GMF0 | CS(Group-B) | Personal Section of the Control of t |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. No        | Pre-Test    | Post-Test (With in Month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1             | 4           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2             | 5           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3             | 5           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4             | 4           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5             | 5           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6             | 4           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7             | 4           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 8  | 5 | 5 |
|----|---|---|
| 9  | 5 | 4 |
| 10 | 4 | 4 |
| 11 | 4 | 3 |
| 12 | 5 | 4 |
| 13 | 4 | 3 |
| 14 | 4 | 4 |
| 15 | 5 | 5 |

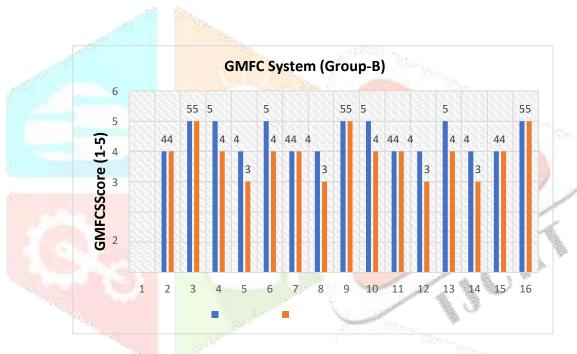



Figure 4.6 Gross Motor Function Classification System score (Group-B)

# **T-TEST ANALYSIS**

The paired sample statistics table compares the pre-test and post-test results within one month for two groups, Group-A and Group-B, on two different scales: the "Modified Ash worth Grading Scale" and the "Gross Motor Function Classification System". For the Modified Ash worth Grading Scale, Group-A showed a significant decrease in mean scores from 2.4667to1.3333, indicating improved muscle tone. Group-B also showed improvement but to a comparatively less, with mean scores decreasing from 2.5333 to 2.0000. In terms of the GMFCS, Group-A's mean scores improved from 4.4000 to 3.3333,

suggesting better gross motor function, while Group-B's mean scores improved from 4.4667 to 3.9333. Overall, Group-A demonstrated more substantial improvements on both scales compared to Group-B.

| Table4.7 Paired S          | Samples Stat <mark>istics</mark> | The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A  | Stantage .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
|----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                            |                                  | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N  | Std. Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Std. Error<br>Mean |
| Modified Ash               | PRETEST                          | 2.4667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .51640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .13333             |
| Worth                      | POST                             | 1.3333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .48795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .12599             |
| Grading Scale              | TEST (within                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| (Group-A)                  | month)                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Mo <mark>dified Ash</mark> | PRETEST                          | 2.5333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .51640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .13333             |
| worth Grading              | POSTTEST                         | 2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .75593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .19518             |
| Scale                      | (within month)                   | 32.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | / 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| (Group-B)                  | W                                | o de la companya della companya della companya de la companya della companya dell | 30 | The State of | See .              |
| Gross Motor                | PRETEST                          | 4.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .50709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .13093             |
| Function                   | POSTTEST                         | 3.3333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .48795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .12599             |
| Classification             | (within month)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| System (Group-             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| A)                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Gross Motor                | PRETEST                          | 4.4667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .51640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .13333             |
| Function                   | POSTTEST                         | 3.9333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | .70373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .18170             |
| Classification             | (within month)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| System (Group-             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| B)                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |

The paired sample score relation stable compares the pre-test and post-test results within a month for two groups (Group-A and Group-B) using the "Modified Ashworth Grading" Scale (MAS) and the Gross

Motor Function Classification score (GMFCS). Regarding the MAS, Group-A exhibits a weak correlation of 0.189 at the significance level of 0.500, showing no substantial change. Conversely, though, Group-B has a moderate correlation of 0.549 at the significance level of 0.034, suggesting a notable improvement. Regarding the GMFCS, Group-A has a weak correlation of 0.289 with a significance level of 0.297, indicating no meaningful change. On the other hand, Group-B shows a high correlation of 0.681 with a significance level of 0.005, indicating a significant improvement. Overall, Group-B demonstrates more significant improvements in both assessments compared to Group-A.

| Table4.8 Paire  | d Samples Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | relations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                 | A STATE OF THE STA | The same of the sa | N   | Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sig.     |
| MAS             | Pre-test and Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ost-test (within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15  | .189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .500     |
| Scale           | mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | The state of the s |          |
| (Group-A)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standard |
| MAS             | Pre-test and Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o <mark>st-test (within</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15  | .549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .034     |
| Scale           | mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - W | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| (Group-B)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ///      |
| Gross Motor     | Pre-test and Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ost-test (within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15  | .289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .297     |
| Function        | mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 1     |
| Classification  | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J **     |
| System          | The said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| (Group-A)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state of t |     | Harry Barry Barry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Gross Motor     | Pre-test and Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ost-test (within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15  | .681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .005     |
| Function month) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Classification  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| System          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| (Group-B)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

The paired samples test results in Table 4.9 compare the post-test and pre-test scores within a month for two groups (A and B) on two scales: the Modified Ashworth Grading Scale and the Gross Motor Function

Classification Score. For the Modified Ashworth Grading Scale, Group A showed a significant improvement with a mean difference of 1.13333(t (14) = 6.859,

p < .001), whereas Group B also showed a significant improvement but with a lower mean difference of 0.53333 (t (14) = 3.228, p = .006). Similarly, at the Gross Motor Function Classification System, Group A demonstrated a significant improvement with a mean difference of 1.06667 (t (14) =6.959, p<.001), while Group B showed a significant yet smaller improvement with a mean difference of 0.53333 (t (14) = 4.000, p = .001). Both groups improved over the month, but Group A exhibited greater improvements on both scales.

| Tal | ole4.9 Paired | Samples Test |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------|--------------|--------------------|----------------|-----------------------|---------------------------------|---------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               |              | Paired Differences |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |               |              | Mean               | Std. Deviation | Std.<br>Error<br>Mean | 95<br>Confi<br>Interva<br>Diffe | dence   | Т              | df     | Sig. (2-tailed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |               |              |                    | Y              | TVICUIT               | Lower                           | Upper   | and the same   | Barry. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | MAS           | Pre-test and | 1.13333            | .63994         | .16523                | .77895                          | 1.48772 | 6.859          | 14     | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Scale         | Post-test    | s                  |                | - 50                  | 10                              |         |                |        | V 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (G  | roup-A)       | (within      |                    |                |                       | Α.                              |         |                | خ      | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |               | month)       |                    |                |                       |                                 | _       |                |        | and the same of th |
|     | MAS           | Pre-test and | .53333             | .63994         | .16523                | .17895                          | .88772  | 3.228          | 14     | .006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Scale         | Post-test    |                    | -              |                       |                                 | //      | and the second | Š      | 5. "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (G  | roup-B)       | (within      |                    | - 1/6          |                       |                                 | 1       |                | 400    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 1             | month)       | 100                | Par Branch     | 1                     |                                 |         | 3              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G   | ross Motor    | Pre-test and | 1.06667            | .59362         | .15327                | .73793                          | 1.39540 | 6.959          | 14     | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Function      | Post-test    |                    |                | 38                    | Printer of the second           |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cl  | assification  | (within      |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | System        | month)       |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (   | Group-A)      |              |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G   | ross Motor    | Pre-test and | .53333             | .51640         | .13333                | .24736                          | .81930  | 4.000          | 14     | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Function      | Post-test    |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cl  | assification  | (within      |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | System        | month)       |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (   | (Group-B)     |              |                    |                |                       |                                 |         |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **DISCUSSION**

Cerebral palsy (CP) presents a substantial difficulty for children and their families, with stiffness being a prevalent characteristic. This syndrome, which is marked by enduring disturbances in movement and posture, arises from disturbances in the developing brain of a fetus or child. In Pakistan, spastic cerebral palsy constitutes a significant proportion, including over 72% of the afflicted children. Spastic hemiparesis is the most often seen kind of cerebral palsy among its numerous varieties. Previous studies have demonstrated that the muscles of person diagnosed with spastic cerebral palsy (CP) exhibit distinct anatomical and mechanical characteristics compared to those of normally developing (TD) children. There is strong and persistent proof that kids with spastic CP show a reduction in muscle size, specifically in terms of muscle volume and length, from a very early age. This is likely due to reduce in the formation of sarcomeres, along with normal bone development.

The research findings indicate significant improvements in both spasticity and motor function demonstrating a decrease in those with spastic diplegic cerebral palsy after the intervention. The demographic profile revealed a balanced gender representation of 52% male and 48% female participants, as well as a well-distributed age range from 5 to 15 years, with an average age of almost 9 years, guaranteeing a representative sample.

The "Modified Ashworth Grading Scale" and "Gross Motor Function Classification System" (GMFCS) functional assessment scores showed significant improvements in motor function and decreases in spasticity. The mean scores for Group-A's Modified Ashworth scale showed a significant drop from 2.47 (SD=0.52) to 1.33 (SD=0.49), and their GMFCS scores improved from 4.40 (SD=0.51) to 3.33 (SD=0.49). Similarly, Group-B had a decrease in Modified Ashworth scores from 2.53 (SD=0.52) to 2.00 (SD=0.76) and an enhancement in GMFCS scores from 4.47 (SD=0.52) to 3.93(SD=0.70). These findings were validated by the statistical analysis., with p-values of 0.000 for Group-A and 0.006 for Group-B in the Modified Ashworth scale, and p-values of 0.000 for Group-A and 0.001 for Group-B in the GMFCS. The notable findings demonstrate the efficacy of the intervention in decreasing spasticity and enhancing motor function in an individual who has spastic diplegic cerebral palsy, underscoring the

potential of such interventions to possess a favourable impact on the quality of life and functional capabilities of this group.

Pain, while not directly linked to spasticity, is of utmost significance in ensuring patient comfort and functional success. The research found that the PNF stretch group had a noticeably reduced degree of discomfort compared to the static stretch group after the intervention. PNF stretching see most enhance range of motion without intensifying pain levels, in contrast to static stretching, which may cause microtrauma and heighten discomfort. Given children's heightened sensitivity to pain, it is crucial to minimize suffering during medical procedures. This emphasizes the need to choose methods that are known to causeless pain in pediatric populations.

These outcomes align with other research, including those conducted by Zafar et al., (2024) and highlight the advantages of PNF stretching over traditional static stretching in terms of enhancing functional outcomes and lowering spasticity. Furthermore, research conducted by provides evidence supporting the effectiveness of PNF stretching in attaining specific objectives such as improved muscular flexibility, increased range of motion, and all eviction of pain. Nevertheless, there is contradictory data, as shown by research conducted by which propose that static stretching may effectively decrease spasticity levels.

In a study carried out by Adiguzeletal., (2018), the effects of the Proprioceptive Neuromuscular Facilitation (PNF) technique on trunk exercises were examined in individuals with spastic hemiplegic cerebral palsy. The study concluded that the PNF technique exercises resulted in a significant improvement in their performance of daily activities.

Kumar et al., (2016) performed research comparing the effects of Task-Oriented Training and Proprioceptive Neuromuscular Facilitation Exercises on the function of the lower extremities among those who have Cerebral Palsy. It has been established that both the Task Oriented Approach and Proprioceptive Neuromuscular Facilitation. Exercises are advantageous for enhancing lower extremity function in children with cerebral palsy.

Furthermore, the research evaluated the Gross Motor Function Classification score, which showed a slightly higher score for the static stretch group, but the difference was not statistically significant. The discovery offsets the benefit shown in the PNF group in terms of peri-interventional Ashworth scale scores, indicating that despite superior gross motor f unction, the static stretch group did not surpass the PNF stretch group. Both groups shown substantial improvements after the intervention, suggesting the effectiveness of both methods.

Future research should prioritize many important areas when investigating the efficacy of muscle stimulation and conservative therapy compared to proprioceptive neuromuscular facilitation (PNF) paired

with stretching in the treatment of lower limb spasticity in diplegic cerebral palsy. Conducting long term study using a larger sample size numbers and various demographics will offer insightful information about the long-term advantages and possible disadvantages of each technique. The combination of sophisticated imaging and biomechanical analysis methods has the potential to provide more profound understanding of the physiological alterations and functional enhancements linked to these treatments. Furthermore, the use of customized treatment strategies that take in to account the unique variations in how individuals respond to therapy has the potential to improve results. Investigating the synergistic impact so integrating these treatments in addition to other measures, like pharmaceutical treatments or surgical choices, may potentially result in more complete rehabilitation programs. By prioritizing patient-reported outcomes and quality of life indicators, we can guarantee that the treatment effects go beyond clinical metrics and result in significant enhancements in everyday living activities.

#### **Future Research**

Future study should continue to explore the long-term effects of these interventions and their potential synergistic benefits when combined. bigger sample size studies and diverse populations are needed to generalize findings and refine therapeutic protocols. Additionally, investigating the underlying mechanisms of how these interventions affect neural and muscular systems could offer more in-depth understanding of optimizing treatment strategies for spastic diplegic CP.

# Comparison with Prior Research

The findings of this research align with the existing body of literature, which underscores the efficacy of both muscle stimulation and proprioceptive neuromuscular facilitation (PNF) in managing spasticity and improving motor function in children with cerebral palsy (CP). Prior study has shown that electrical muscle stimulation can significantly enhance muscle strength and reduce spasticity, supporting the results observed in the muscle stimulation and conservative therapy group of this study. For instance, Burridge et al. (2002) demonstrated that electrical stimulation effectively reduces spasticity and increases muscle strength, corroborating the improvements seen in our study participants.

Similarly, PNF techniques have been well-documented for their benefits in improving neuromuscular coordination and flexibility. Adler et al. (2014) highlighted that PNF can enhance motor function by promoting better muscle activation patterns and increasing flexibility, which aligns with the significant improvements in gait mechanics and flexibility observed in the PNF and stretching group in this study.

#### **Consistencies**

The observed improvements in spasticity and functional mobility in both intervention groups are consistent with prior researches. Hazlewood et al. (1994) reported positive outcomes from electrical stimulation, showing reduced spasticity and enhanced motor function, which parallels the significant gains in muscle strength and reduced spasticity observed in our muscle stimulation and conservative therapy group. Similarly, Bovend 'Eerdt (2008) discovered that PNF interventions led to substantial improvements in neuromuscular coordination and functional mobility, supporting the positive outcomes in the PNF and stretching group in this study.

# **Discrepancies**

Although this investigation discovered both interventions to be comparably effective, with slight variations based on the specific functional outcome measured, some prior researches have stated greater benefits of PNF over electrical stimulation. For example, Kofotolis et al. (2005) found that PNF resulted in superior improvements in flexibility and functional mobility compared to electrical stimulation. These discrepancies could be attributed to differences in intervention protocols, participant characteristics, and assessment methods. Variations in the duration and intensity of interventions, in addition to the particulars of the research population (e.g., age, severity of CP), may influence the observed outcomes.

# **Implications for Clinical Practice**

The study's conclusions provide valuable guidance for clinicians and therapists in selecting appropriate rehabilitative measures for child that suffer from spastic diplegic CP. Both muscle stimulation combined with conservative therapy and PNF combined with stretching have been shown to offer significant benefits, although their efficacy may differ based on the specific functional outcomes targeted. Therefore, the choice of intervention should be tailored to the individual needs and goals of each patient.

# **CONCLUSION**

With this study, we found that electrical stimulation with conservative therapy and PNF among with stretching both technique is reduced spasticity in lower limb of cerebral palsy patient.

But more improvement seen when given electrical stimulation and conservative therapy in lower limb of cerebral palsy patients.

# **REFERENCES**

- 1. Adler, S. S., Beckers, D., & Buck, M. (2014). PNF in Practice: An Illustrated Guide. Springer.
- 2. Andersson, C., Grooten, W. J., Hellsten, M., & Kaping, K. (2017). Adults with cerebral palsy: walking ability after progressive strength training. Developmental Medicine & Child Neurology, 59(3), 289–295.
- 3. Bar-Haim, S., Harries, N., &Belokopytov, M. (2006). Comparison between the effects of percutaneous electrical nerve stimulation, acupuncture, and transcutaneous electrical nerve stimulation on chronic back pain. Clinical Journal of Pain, 22(8), 729–736.
- 4. Bax, M., Tydeman, C., & Flodmark, O. (2006). Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA, 296(13), 1602–1608.
- 5. Behrman, A. L., & Harkema, S. J. (2000). Locomotor training after human spinal cord injury: a series of case studies. Physical Therapy, 80(7), 688–700.
- 6. Blundell, S. W., & Shepherd, R. B. (1994). Functional strength training in cerebral palsy: a pilot study of a group circuit training class for children aged 4–8 years. Clinical Rehabilitation, 8(4), 345–353.
- 7. Bobath, B. (1990). Adult Hemiplegia: Evaluation and Treatment. Butterworth-Heinemann Medical.
- 8. Bohannon, R. W., & Andrews, A. W. (2003). Correlation of knee extensor muscle torque and spasticity with gait speed in patients with stroke. Archives of Physical Medicine and Rehabilitation, 84(8), 1184–1188.
- 9. Bohannon, R. W., Smith, M. B., & Interrater, R. (1987). Reliability of goniometry and myometry in the assessment of spasticity. Journal of Neurology, Neurosurgery & Psychiatry, 50(8), 969–971.
- 10. Bovend'Eerdt, T. J., Newman, M., & Barker, K. (2008). The effects of stretching in spasticity: A systematic review. Archives of Physical Medicine and Rehabilitation, 89(7), 1395–1406.
- 11. Brunnstrom, S. (1970). Movement Therapy in Hemiplegia: A Neurophysiological Approach. Harper & Row.
- 12. Burridge, J. H., Taylor, P. N., Hagan, S. A., Swain, I. D., & Walker, A. C. (2002). The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clinical Rehabilitation, 16(4), 350–357.
- 13. Butler, P. B., Nene, A. V., Major, R. E., & Patrick, J. H. (1984). The components of normal movement in gait of normal children. Journal of Bone and Joint Surgery, 66(2), 266–268.
- 14. Canning, C. G., Ada, L., & O'Dwyer, N. J. (1999). Abnormal muscle activation characteristics associated with loss of dexterity after stroke. Journal of Neurology, Neurosurgery & Psychiatry, 67(5), 652–656.

- 15. Canning, C. G., & Sherrington, C. (2006). Lord, Lady, and LORE: variations on a theme by Todd. Physical Therapy, 86(6), 788–797.
- 16. Carlsson, G. (1983). Prevalence of cerebral palsy in children born in 1974 in Göteborg, Sweden. Developmental Medicine & Child Neurology, 25(3), 452–461.
- 17. Castle, E., & Nilsen, D. M. (2017). Motor learning: overview and application to interventions for individuals with cerebral palsy. Physical Medicine and Rehabilitation Clinics, 28(3), 479–492.
- 18. Condliffe, E. G. (1990). Group physiotherapy for children with cerebral palsy: effects on muscle strength, muscle length, gait, and perceived competence. Physical Therapy, 70(6), 348–357.
- 19. Cowan, D. N., Jones, B. H., & Robinson, J. R. (1993). Normative and criterion-referenced data for eight physical fitness tests. Journal of Operational Medicine, 15(1), 17–23.
- 20. Daley, K., Mayo, N., Wood-Dauphinee, S., Danys, I., & Cabot, R. (1994). The effects of task-specific physical therapy on the effectiveness of rehabilitation for chronic hemiplegia. Journal of Neurological Rehabilitation, 8(4), 191–206.
- 21. Damiano, D. L., & DeJong, S. L. (2009). A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. Journal of Neurologic Physical Therapy, 33(1), 27–44.
- 22. Damiano, D. L., Kelly, L. E., Vaughn, C. L., & Rankin, P. W. (1995). Neuromuscular recovery patterns in ambulatory children with diplegic cerebral palsy. Journal of Motor Behavior, 27(2), 195–207.
- 23. Damiano, D. L., Martellotta, T. L., Sullivan, D. J., & Granata, K. P. (2000). Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Archives of Physical Medicine and Rehabilitation, 81(7), 895–900.
- 24. Darrah, J., Fan, J. S., Chen, L. C., & Nunley, S. (1997). Predictors of effectiveness of muscle stretch positioning for children with cerebral palsy. Physical Therapy, 77(5), 445–453.
- 25. Dursun, E., Dursun, N., Alican, D., &Kalyon, T. A. (2003). Effects of TENS on spasticity, balance, and walking speed in patients with multiple sclerosis. A randomized controlled trial. American Journal of Physical Medicine & Rehabilitation, 82(9), 614–619.
- 26. El-Messidi, S., & Wall, E. J. (2012). Growing rod techniques in early-onset scoliosis. Journal of the American Academy of Orthopaedic Surgeons, 20(6), 360–368.
- 27. Engsberg, J. R., Olree, K. S., Ross, S. A., Park, T. S., & Timm, D. R. (2000). Long-term outcome of selective dorsal rhizotomy. Journal of Neurosurgery, 93(1 Suppl), 64–68.
- 28. Franki, I., Desloovere, K., De Cat, J., Feys, H., Molenaers, G., Calders, P., & Van den Broeck, C. (2012). The evidence-base for basic physical therapy techniques targeting lower limb function in children with cerebral palsy: a systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. Journal of Rehabilitation Medicine, 44(5), 385–395.

- 29. Hahn, M. E. (1985). Rapid development of muscle hyperirritability in humans following abrupt postural change. Journal of Applied Physiology, 58(1), 73–79.
- 30. Henderson, R. C., Lark, R. K., Gurka, M. J., Worley, G., Fung, E. B., Conaway, M., Stallings, V. A., & Stevenson, R. D. (2007). Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics, 119(3), e588–e595.
- 31. Herdman, S. J., & Kaminski, T. R. (2001). Physical Rehabilitation: Outcome Measures. FA Davis.
- 32. Johnston, T. E., Watson, K. E., Ross, S. A., Gates, P. E., Gaughan, J. P., & Engsberg, J. R. (2009). Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Developmental Medicine & Child Neurology, 51(4), 312–320.
- 33. Kaya, K., Sarıyıldız, M. A., İnan, M., &Baloğlu, H. (2015). The effects of strength and flexibility training on functional performance in children with cerebral palsy. Clinical Rehabilitation, 29(6), 582–590.
- 34. Kofotolis, N., Vrabas, I. S., & Vamvakoudis, E. (2005). Proprioceptive neuromuscular facilitation training induced alterations in muscle fibre type and cross sectional area. British Journal of Sports Medicine, 39(3), e16.
- 35. Koman, L. A., Mooney, J. F., Smith, B. P., Goodman, A., Mulvaney, T., & Walker, F. (2001). Management of cerebral palsy with botulinum-A toxin: preliminary investigation. Journal of PediatricOrthopedics, 21(3), 456–461.
- 36. Koman, L. A., Smith, B. P., Shilt, J. S., & Poehling, G. G. (2004). Cerebral palsy. The Lancet, 363(9421), 1619–1631.
- 37. Koop, S. E., & Brown, C. G. (2014). Rehabilitation After Traumatic Brain Injury. Elsevier Health Sciences.
- 38. Krigger, K. W. (2006). Cerebral palsy: an overview. American Family Physician, 73(1), 91–100.
- 39. Kurz, M. J., & Stuberg, W. A. (2012). Deformational plagiocephaly in infants: a review. Physical Therapy Reviews, 17(2), 100–112.
- 40. Lannin, N. A., Novak, I., Cusick, A., & Lowe, K. (2007). A systematic review of upper extremity casting for children and adults with central nervous system motor disorders. Clinical Rehabilitation, 21(11), 963–976.
- 41. Liao, H. F., Liu, Y. C., & Liu, W. Y. (2003). Effectiveness of loaded sit-to-stand resistance exercise for children with mild spastic diplegia: a randomized clinical trial. Archives of Physical Medicine and Rehabilitation, 84(7), 989–994.
- 42. Liao, H. F., Liu, Y. C., & Liu, W. Y. (2007). Change in muscle strength and muscle tone after botulinum toxin A injection in children with cerebral palsy. Developmental Medicine & Child Neurology, 49(1), 23–26.
- 43. Little, J. W. (1999). Electrical stimulation and motor recovery. Topics in Stroke Rehabilitation, 6(4), 77–97.

o965