

ANALYSIS OF PATIENT SAMPLES FOR DISEASE CAUSING AGENTS

Riya Bhati ¹, Vanita Chandel²

¹Student, ²Assistant Professor

Abstract

This report is based on my work in the Central Laboratory of Sharda Hospital. The main discussion here is about techniques and procedures that are usually opted for diagnosis and identification of pathogens and disease causing agents, which can be useful for the purpose of research also. Broadly divided into Biochemistry, Microbiology (Bacteriology, Serology, Virology and Mycology) and Pathology. In Biochemistry techniques such as Chromatography and its types including - Thin-layer chromatography (TLC), Column chromatography and High-performance liquid chromatography (HPLC) as well as basics of Spectroscopy UV-Visible spectroscopy, Infrared spectroscopy (IR) and Fluorescence spectroscopy. Mass Spectrometry and Enzyme Assays along with Protein purification techniques such as Affinity chromatography, Size-exclusion chromatography, NMR (Nuclear Magnetic Resonance) spectroscopy and Bioinformatics. In Microbiology methods and techniques in Bacteriology mainly focused on culturing Bacteria and processing them through different staining methods, biochemical testing and smear preparation. Serology Lab mainly use strip testing (The kit contains indicators to visualize the reaction between antibodies and reagents. This could involve color changes, fluorescence, or other methods depending on the design of the kit). Virology and Molecular Laboratory employs techniques such as ELISA, RT-PCR and methods for DNA extraction. Working in Pathology Lab teaches us about Histopathology (This involves the microscopic examination of tissue samples to study the cellular structure and identify any abnormalities. Tissues are typically stained with dyes to enhance visualization), Cytology, Immunohistochemistry (IHC) and Clinical Chemistry, techniques include spectrophotometry, chromatography, and immunoassays. Along with Flow Cytometry used for Hematological analysis to evaluate blood samples to assess the cellular components (red blood cells, white blood cells, and platelets) and their characteristics. Other techniques include complete blood count (CBC), blood smear examination, and coagulation assays.

Biochemistry

Biochemistry is the study of biological processes by chemical analysis. It is a lab-based science that uses a combination of chemistry and biology.

Biochemists study the composition, interactions, and structure of molecules to comprehend their functions in biological systems and to learn how to handle them. When Scientists started researching topics like:

- How food provides energy to living things
- The chemistry of inheritance
- What essential alterations take place in illness
- Molecular biology, immunochemistry, neurochemistry, and the fields of bioinorganic, bioorganic, and biophysical chemistry are all included in the field of biochemistry.

Role of Biochemists

Scientists from a wide range of other disciplines collaborate with biochemists, typically on issues involving very minute components of extremely vast and complicated systems.

Industry biochemists are drawn to certain uses that could result in commercially viable goods.

Academic or government biochemists carry out more fundamental than practical research.

Uses of Biochemistry

There are numerous uses for biochemistry in veterinary, dental, and medical fields. Additional uses consist of:

Science of Food

Foods' chemical composition is ascertained by biochemists, who also devise techniques to create cheap, plentiful supplies of nutrient-dense foods, extract nutrients from waste products, and/or extend the shelf life of food items.

Farming

Herbicides and insecticides' interactions with plants and pests are studied by biochemists. They look at the links between a compound's structure and activity, assess if it can stop growth, and assess the toxicological consequences on nearby life.

Clinical chemistry, physiology, microbiology, toxicology, and pharmacology

Biochemists explore the mechanisms underlying medication activities, viruses, organ function, and the application of chemical principles, methods, and procedures to the study of illness diagnosis and treatment.

Different Tests done in Biochemistry Laboratory –

Clinical Biochemistry Test	
1.	LFT
A	Total Bilirubin
B	Direct
C	Indirect
D	SGOT/AST
E	SGPT/ALT
F	Alkaline Phosphate
G	Total Protein
H	Albumin
I	Globulin
J	A:G
2.	KFT
A	Blood Urea
B	S. Creatinine
C	Uric Acid
D	BUN
E	Serum Electrolyte(Na, K, Cl)
3.	Lipid Profile
A	Total Cholesterol
B	HDL
C	LDL
D	ULDL
E	Triglycerides
4.	Glucose Test
A	Fasting Blood Sugar
B	PP(Post Prandial)
C	Random
D	OGTT
E	GCT
5.	RFT
A	Calcium
B	Phosphorus
C	Urea
D	Uric Acid
E	Serum Electrolytes(Na, K, Cl)
F	Creatinine
6.	G6PD
7.	Iron
8.	T1BC
9.	Transferrin
10.	Lipase
11.	Amylase
12.	Magnesium

Table 1

Immunochemistry Test	
1.	Thyroid Panel-1(T3,T4,TSH)
2.	Thyroid Panel-2(FT3,FT4,FSH)
3.	LH
4.	Ferritin
5.	Vitamin B12
6.	Folic Acid
7.	Vitamin D Total(25-Hydroxy)
8.	PSA
9.	PRL
10.	PCT

Table 2

Basic Techniques and Methods used in Biochemistry Lab-

Similar to other scientific disciplines, biochemistry strives to measure or quantify outcomes, occasionally utilising advanced equipment. Analysing the components that enter and exit a living thing, such as food and oxygen, was the first method used to analyse the processes taking place in it (excretion products, carbon dioxide). This still serves as the foundation for so-called balance experiments carried out on animals, where diets and excrement are analysed in great detail, for instance. Numerous chemical procedures involving particular colour reactions have been devised for this purpose; quantitative measurement is required, and these approaches need the use of spectrophotometers, or spectrum-analyzing tools. Commonly used methods for measuring oxygen and carbon dioxide and obtaining respiratory quotients (the ratio of carbon dioxide to oxygen) are called gasometric techniques. Determining the amounts of substances entering and exiting a particular organ as well as incubating tissue slices in a physiological medium outside the body and observing the changes in the medium have yielded some more detail.

Centrifugation

The centrifuge is a crucial instrument in biochemical research because it separates materials based on weight differences by applying strong centrifugal forces to suspended particles or even molecules in solution through fast spinning. Red blood cells from blood plasma, mitochondrial nuclei from cell homogenates, and individual proteins from complex combinations can all be separated in this way. Proteins are separated by ultracentrifugation, which is a very fast spinning process. The molecular weights of proteins can be ascertained by taking the right photos of the protein layers as they form in the centrifugal field.

Electrophoresis

The electrical charge of biological molecules is another characteristic that has been used for analysis and separation. Depending on how acidic the fluid they dissolve in is, proteins and amino acids have net positive or negative charges. These molecules migrate towards the positively (anode) or negatively (cathode) charged poles at differing speeds in an electric field, allowing for separation. These kinds of separations can happen in liquids or when the proteins saturate a stationary material such gels made of acrylamide, starch, or cellulose (filter paper). It is possible to quantify the amount of proteins in a mixture by measuring the proper colour reactions of the proteins and scanning colour intensities. By using electrophoresis, distinct proteins can be recognised and extracted, and the purity of a protein can be ascertained. (Human haemoglobin electrophoresis demonstrated the aberrant haemoglobin in sickle-cell anaemia, the first conclusive instance of a "molecular disease.")

Isotopes and chromatography

An further foundation for analysis comes from the differences in a material's solubility in aqueous and organic solvents. In its previous incarnation, materials were divided into different solvents and a separation was carried out using a sophisticated equipment. Paper chromatography, a condensed version of the same idea, was developed so that minute amounts of chemicals may be separated on filter paper and recognised by suitable colour responses. Unlike electrophoresis, this technique has been used on a large range of biological substances and has made a significant contribution to biochemistry research.

The precise amino acid sequence of complex proteins has since been determined using further organic chemistry techniques.

The use of isotopes—heavy or radioactive elements—to identify biological substances and "trace" their metabolism has been arguably the most significant method in deciphering the intricate workings of metabolism. The isotope-labeled substances have required extensive technology in mass spectroscopy and radioactive detecting apparatuses for measurement.

Numerous other physical methods, including electron spin spectroscopy, circular dichroism, nuclear magnetic resonance, and X-ray crystallography, have emerged as important resources for understanding the relationship between chemical structure and biological activity.

Instruments used in Biochemistry Lab –

1. Centrifuge
2. Deep Freezer
3. Refrigerator
4. Vitros 5600 Integrated System
 - Over 900 tests per hour of clinical chemistry and immunoassay testing can be performed with this integrated system.
 - Immunoassay menu and clinical chemistry work together to power your lab.
 - Consider the VITROS 5600 to be the workhorse of your lab. It offers your lab excellent quality, productivity, and value by combining a vast clinical chemistry and immunoassay menu with over 160 tests on a single integrated platform.
 - With the VITROS 5600, you can effectively combine necessary testing to provide doctors and patients who rely on you with quick, high-quality findings.

Five core enabling technologies are combined in the VITROS 5600 Immunodiagnostic System to optimise patient result quality, user-friendliness, and productivity.

With a 95% reportable result efficiency, VITROS MicroSlide Technology produces excellent results while reducing operator intervention and enhancing user friendliness. Tests can be processed on microslides using the MicroSlide technology, and the MicroSlide subsystem center's electrometer and reflectometer can read the results. That is using the principle of Colorimetry.

Special chemistry menu options and user-defined assays are offered by VITROS MicroTip Technology in an affordable, readily implementable format.

Without affecting operator workflow or result turnaround time, VITROS MicroSensor Technology automatically detects and flags endogenous interferences to increase efficiency and reduce costs.

With improved chemiluminescence detection, VITROS MicroWell Technology offers excellent immunoassay accuracy and precision over a wide dynamic range and in a variety of disease conditions. reduces the need for pointless dilutions, duplicates, and redraws. The VITROS Intellicheck Technology facilitates process monitoring in real-time.

Microbiology

The study of microorganisms, such as viruses, bacteria, algae, fungi, slime moulds, and protozoa, is known as microbiology. These tiny, primarily unicellular creatures are studied and manipulated using different techniques than most other biological studies.

Now coming to the first section of Microbiology Lab –

Bacteriology Laboratory

The field of biology known as bacteriology focuses on the morphology, ecology, genetics, and biochemistry of bacteria, among many other topics. This branch of microbiology deals with the description, taxonomy, and identification of bacterial species.

Economic worries about food and wine spoiling, along with the necessity for doctors to test and implement the germ hypothesis of disease, gave rise to the field of bacteriology. Numerous significant discoveries, including the creation of vaccines, have resulted from the study of microorganisms.

Commonly used Media in Bacteriology Laboratory-

1. MHA(Mueller Hinton Agar)(for AST and Spp. cultivation)
2. Blood Agar(for growing fastidious Organisms)
3. DCA(deoxycholate citrate agar)(for isolation of enteric pathogens)
4. XLD(Xylose Lysine Deoxycholate Agar)(for isolation of *Salmonella* and *Shigella* Species)
5. Chocolate Agar(it is a type of blood agar that has red blood cells that have been heated to 80°C to cause them to lyse. To avoid oxidised product development, CHOC agar is manufactured, distributed, and packaged in an oxygen-free environment)
6. Nutrient Agar(used to grow non-fastidious microbes)
7. CLED(Cystine Lactose Electrolyte deficient agar)(used for isolation of urinary microbes)

List of Tests performed in Bacteriology Laboratory –

1.	Urine Culture and Sensitivity
2.	Pus Culture and Sensitivity
3.	Swab Culture and Sensitivity
4.	Sputum Culture and Sensitivity
5.	Fluid Culture and Sensitivity
6.	Ear Swab Culture and Sensitivity
7.	Eye Swab Culture and Sensitivity
8.	Pleural Fluid Culture and Sensitivity
9.	Ascitic Fluid Culture and Sensitivity
10.	CSF Culture and Sensitivity
11.	Throat Swab Culture and Sensitivity
12.	Hospital Surveillance Culture
13.	Fumigation Culture
14.	Vaginal Swab Culture and Sensitivity
15.	Urethral discharge Culture and Sensitivity
16.	Tracheal Secretions Culture and Sensitivity
17.	Tissue Culture and Sensitivity
18.	ETT Secretions Culture and Sensitivity
19.	BAL Culture and Sensitivity
20.	Nasal Swab Fluid Culture and Sensitivity
21.	Hand Swab Culture and Sensitivity
22.	Catheter Tip Culture and Sensitivity
23.	Bronchial Swab Culture and Sensitivity
24.	Bronchial Aspirate Culture and Sensitivity
25.	Bone Marrow Culture and Sensitivity
26.	Blood Culture and Sensitivity
27.	Bile Culture and Sensitivity
28.	Stool Culture and Sensitivity
29.	Modified ZN for Nocardia
30.	Gram Stain
31.	Albert Stain
32.	Air Culture

Table 3

Initial Steps after a Patient Sample is received in the Lab:-

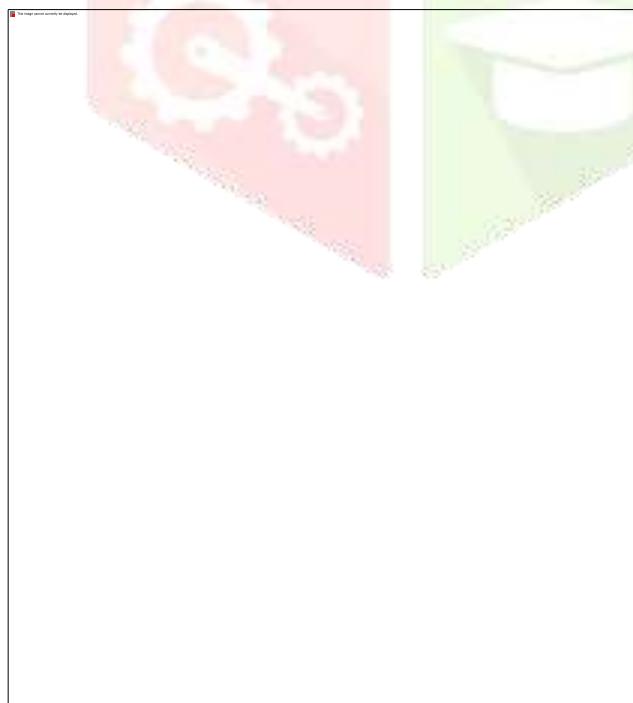
Specimen Received

Culture in Media(by various striking methods)(Incubation Overnight/12-18 Hrs)

Culture Recognition

Gram Stain

Based on the above further testing is done to differentiate and identify the Bacterial Species.


AST(Antimicrobial susceptibility testing)

A primary goal of the clinical microbiology laboratory is antimicrobial susceptibility testing (AST). With AST, you can estimate the effectiveness of a treatment by measuring the bacterial reaction to an antimicrobial drug in vitro. Standard AST procedures take a day to complete and require isolated organisms. As a result, it takes at least two days to get susceptibility data from a clinical sample. When resistance develops, this delay could result in a protracted interval between antibiotic susceptibility tests, during which patients receive inadequate or inefficient treatment. Quick AST techniques are required to close this disparity.

The 1940-developed agar disc diffusion test is now one of the most often used manual AST techniques in clinical microbiology labs. It is among the earliest methods for routine AST. The primary benefits include low cost, ease of modification, simplicity, repeatability, and the ability to be used as a screening test against many isolates.

Using a standardised inoculum of the test microorganism (equivalent to the 0.5 McFarland turbidity standard), Mueller–Hinton agar plates (90 mm diameter) are inoculated. On the inoculated agar surface, up to 12 commercially made paper discs with the appropriate amounts of the tested agent (about 6 mm in diameter) are inserted. Agar plates are incubated for 16–24 hours at 35–37°C, or longer under acceptable circumstances.

Next, each antibiotic disc's growth inhibition zone diameter is measured in millimetres, and the diameter of the disc is included in the outcome. A sliding calliper or a ruler that is held on the back of the inverted agar plate is used to do this manually. Additionally, the automated system, also known as the SIRscan automatic zone reader or ADAGIO Automated System (Bio-Rad Laboratories, Inc., Hercules, CA), has previously been put on the market. The disc diffusion test is not suitable for determining minimum inhibitory concentration (MIC) because it only yields qualitative results by classifying the bacterial susceptibility as susceptible, intermediate, or resistant.

Figure 1:- AST Petri Plate with antibiotics placed.

Preparing a Smear

Preparing a smear in a bacteriology lab is a crucial step in many microbiological techniques, including Gram staining, acid-fast staining, and various bacterial identification methods. Here's a general procedure for preparing a bacterial smear:

Materials Needed:

Bacterial culture: Grown on appropriate media (agar plates, broth, etc.).

Sterile glass slides: Clean and dry.

Inoculating loop or swab: For transferring bacterial culture onto the slide.

Bunsen burner or slide warmer: For heat fixing.

Distilled water: For rinsing.

Procedure:

Preparation of Slide:

Place a clean, dry glass slide on your work surface.

Label the slide with appropriate identifiers (e.g., sample ID, date).

Transfer Bacterial Culture:

Using a sterile inoculating loop or swab, obtain a small amount of bacterial culture from the source (e.g., agar plate, broth culture).

Apply the bacterial culture to the center of the slide. If using a loop, spread the culture in a circular motion to create a thin, even layer. If using a swab, gently streak the culture across the slide surface.

Heat Fixation:

Pass the slide containing the bacterial smear through the flame of a Bunsen burner several times or place it on a slide warmer set at an appropriate temperature (usually around 60-70°C) for a few minutes.

Heat fixing kills the bacteria, adheres them to the slide, and helps preserve cellular structures for staining.

Allow to Air Dry:

Let the slide air dry completely before proceeding with further staining or processing steps. This typically takes a few minutes.

Optional: Fixative Treatment (for certain staining procedures):

Some staining techniques may require additional fixation steps before staining to improve cell adherence and prevent loss during staining procedures. This step depends on the specific staining protocol being used.

Labeling and Storage:

Once the smear is dry and fixed, label the slide with appropriate identifiers using a waterproof marker.

Store the slide in a slide box or other suitable container until ready for staining or further analysis.

Tips:

Work quickly and efficiently to prevent contamination and maintain the viability of the bacterial culture.

Ensure that the bacterial smear is thin and evenly spread to facilitate proper staining and microscopic examination.

Properly dispose of any contaminated materials and sterilize equipment after use to prevent the spread of pathogens.

Gram Staining

Gram staining is a laboratory technique used to differentiate bacteria into two categories: Gram-positive and Gram-negative. Here's a general outline of the Gram staining procedure:

Materials Needed:

Bacterial culture: Grown on agar plates or broth.

Sterile glass slides: For preparing smears.

Inoculating loop or swab: For transferring bacterial culture onto the slide.

Crystal violet: Primary stain.

Gram's iodine: Mordant.

Decolorizer: Typically alcohol or acetone.

Safranin: Counterstain.

Distilled water: For rinsing.

Microscope: To observe stained slides.

Bunsen burner or slide warmer: For heat fixing.

Procedure:

Preparation of Slide:

Place a small drop of water in the center of a clean glass slide.

Using a sterile loop or swab, transfer a small amount of bacterial culture to the water drop. Spread it evenly to create a thin film.

Heat Fixation:

Pass the slide through the flame of a Bunsen burner or use a slide warmer to heat fix the bacterial smear. This kills the bacteria, adheres them to the slide, and improves staining quality.

Staining:

Flood the smear with crystal violet (primary stain) and let it sit for about 1 minute.

Use distilled water to gently rinse the slide in order to get rid of extra stain.

Apply Gram's iodine (mordant) to the smear, covering it completely. Let it sit for about 1 minute. Gram's iodine forms a complex with crystal violet, enhancing its retention within Gram-positive bacteria.

Decolorization:

Decolorize by gently rinsing the slide with the decolorizer (alcohol or acetone). This step is crucial and must be monitored carefully to avoid over-decolorization.

Rinse immediately with distilled water as soon as the violet color stops flowing from the smear. Over-decolorization can result in Gram-positive bacteria appearing Gram-negative.

Counterstaining:

Flood the smear with safranin (counterstain) and let it sit for about 30-60 seconds.

Use distilled water to gently rinse the slide in order to get rid of extra stain.

Drying and Examination:

Blot the slide gently with bibulous paper or allow it to air dry.

Once dry, examine the slide under a microscope using oil immersion (1000x magnification).

Gram-positive bacteria will appear violet, while Gram-negative bacteria will appear pink/red due to the counterstain.

Interpretation:

Gram-positive: Retain the crystal violet-iodine complex and appear violet.

Gram-negative: Lose the crystal violet-iodine complex during decolorization and take up the safranin counterstain, appearing pink/red.

Note: Proper technique, timing, and quality of reagents are essential for accurate results.

Other Important Tests for identification of Bacterial Species in the Laboratory are :-

1. Oxidase Test

An enzyme involved in aerobic organisms' electron transport chain, cytochrome c oxidase, can be detected by the oxidase test, a biochemical procedure. This test helps identify some genera of bacteria, including *Pseudomonas*, *Neisseria*, and *Vibrio*, and is especially helpful in differentiating between Gram-negative bacteria.

2. CAMP(Christie-Atkins-Munch-Peterson) Test

The CAMP test, short for Christie-Atkins-Munch-Petersen test, is a microbiological test used to identify Group B streptococci (*Streptococcus agalactiae*), particularly in the context of diagnosing infections such as neonatal sepsis and meningitis. The test relies on the synergistic hemolytic activity between Group B streptococci and *Staphylococcus aureus*.

3. Catalase Test

The catalase test is a biochemical test used to identify bacteria that produce the enzyme catalase. Hydrogen peroxide (H_2O_2) is broken down by the enzyme catalase into water (H_2O) and oxygen (O_2). This reaction produces bubbles of oxygen gas, which is visible as effervescence.

To perform the catalase test, a small amount of the bacterial culture is placed on a microscope slide or in a test tube. Then, a few drops of hydrogen peroxide solution are added to the bacterial sample. If the bacteria produce catalase, bubbles of oxygen will be formed as the hydrogen peroxide is broken down.

The catalase test is particularly useful in differentiating between catalase-positive bacteria, such as *Staphylococcus* species, which produce catalase, and catalase-negative bacteria, such as *Streptococcus* species, which do not produce catalase.

The test is straightforward, relatively quick, and inexpensive, making it a valuable tool in microbiology laboratories for bacterial identification.

4. Optochin Susceptibility Test

The optochin susceptibility test is a laboratory technique used to differentiate *Streptococcus pneumoniae* from other alpha-hemolytic streptococci, particularly *Streptococcus mitis* and *Streptococcus oralis*. *Streptococcus pneumoniae* is the causative agent of pneumonia, meningitis, and other infections, and accurate identification is crucial for appropriate treatment.

To perform the optochin susceptibility test, a lawn culture of the alpha-hemolytic streptococcal isolate is prepared on a blood agar plate. Then, an optochin (ethylhydrocupreine hydrochloride) disc is placed on the surface of the agar plate. Optochin inhibits the growth of *Streptococcus pneumoniae* but has no effect on other alpha-hemolytic streptococci.

After incubating the plate, the zone of inhibition around the optochin disc is measured. If there is a clear zone of inhibition (greater than 14 mm in diameter), the organism is susceptible to optochin and is likely *Streptococcus pneumoniae*. If there is no significant zone of inhibition, the organism is resistant to optochin and is likely a different alpha-hemolytic streptococcus, such as *Streptococcus mitis* or *Streptococcus oralis*.

The optochin susceptibility test is simple, rapid, and inexpensive, making it a valuable tool for the presumptive identification of *Streptococcus pneumoniae* in clinical microbiology laboratories. However, it should be used in conjunction with other biochemical and serological tests for accurate identification, especially in cases where there may be ambiguity.

5. Alberts Stain

Corynebacterium diphtheriae's metachromatic granules can be stained and observed using Albert's stain test. A type of differential stain called Albert stain is used to identify and stain metachromatic granules. When the granules are subjected to Albert's stain and contrasted with the pale green cytoplasm, they take on a purple-black hue.

6. AFB(Acid-Fast Bacilli) Test

The Acid-Fast Bacilli (AFB) test is a laboratory technique used to diagnose tuberculosis (TB) and other infections caused by *Mycobacterium* species, such as *Mycobacterium leprae* (the bacterium that causes leprosy). These bacteria have a unique cell wall composition that makes them resistant to conventional staining techniques used in microbiology.

In the AFB test, specimens, typically sputum (mucus coughed up from the lungs), are stained with a special dye called Ziehl-Neelsen stain or auramine-rhodamine stain. This staining method allows the bacteria to retain the dye even when washed with acid-alcohol, hence the name "acid-fast." Under a microscope, acid-fast bacteria appear bright red or pink against a contrasting background.

The presence of acid-fast bacilli in the stained sample indicates a potential infection with *Mycobacterium tuberculosis* or other related species. However, further tests, such as culturing the bacteria from the sample, are usually required to confirm the diagnosis definitively.

The AFB test is crucial for diagnosing TB, especially in regions where the disease is prevalent. Early detection and treatment of TB are essential for controlling the spread of the disease and preventing its complications.

Bac T/ ALERT 3D Microbial Identification System

The BacT/ALERT 3D Microbial Identification System is an automated microbial detection and identification system commonly used in clinical microbiology laboratories. It's designed to detect the presence of

microorganisms, primarily bacteria and fungi, in blood culture samples obtained from patients suspected of having bloodstream infections (bacteremia or fungemia).

Here's how the system mostly works:

Sample Collection: Blood specimens from patients suspected of having bloodstream infections are collected and inoculated into blood culture bottles containing growth media.

Incubation: The inoculated blood culture bottles are loaded into the BacT/ALERT system, where they are continuously monitored for microbial growth. The system provides optimal incubation conditions, including temperature control and agitation, to promote microbial growth.

Detection: As microorganisms grow in the blood culture bottles, they produce carbon dioxide (CO₂) as a metabolic byproduct. The BacT/ALERT system monitors changes in CO₂ levels within the bottles using a colorimetric sensor system. When CO₂ levels increase beyond a certain threshold, it indicates the presence of microbial growth.

Alerting: When microbial growth is detected, the system triggers an alert, notifying laboratory personnel that the blood culture bottle has flagged positive. This prompt allows for timely processing and further analysis of the positive sample.

Identification: Following a positive signal, the microbial organisms in the blood culture bottle are typically subcultured onto agar plates or other appropriate media for further identification and susceptibility testing. In some versions of the BacT/ALERT system, additional technologies like matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) may be integrated for rapid microbial identification.

The BacT/ALERT 3D Microbial Identification System streamlines the detection and identification of microbial pathogens in blood culture samples, facilitating timely diagnosis and treatment of bloodstream infections. It's valued in clinical settings for its automation, accuracy, and efficiency in microbiological analysis.

Serology

Serology is a branch of laboratory medicine that deals with the detection and measurement of antibodies, antigens, and other substances in blood serum or other bodily fluids. It plays a crucial role in diagnosing various infectious diseases, autoimmune disorders, allergies, and certain types of cancers.

Here's how serology typically works:

- **Sample Collection:** Blood or other bodily fluid samples are collected from patients and processed in the laboratory.
- **Testing Methods:** Serological tests can involve different techniques depending on what substance is being detected:
 - **Antibody Detection:** Enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody (IFA) test, and Western blot are common methods used to detect antibodies produced by the immune system in response to a specific infection or antigen.
 - **Antigen Detection:** ELISA and rapid diagnostic tests (RDTs) are often used to detect antigens, such as viral proteins or bacterial cell wall components, directly in patient samples.
 - **Other Substances:** Serological tests can also detect other substances like hormones, tumor markers, or allergens using various immunoassay techniques.
- **Interpretation:** The results of serological tests are interpreted by analyzing the presence, concentration, or activity of specific antibodies, antigens, or other substances in the patient's sample. This interpretation helps healthcare providers diagnose infections, autoimmune diseases, allergic reactions, and other conditions.
- **Clinical Applications:** Serology is used in a wide range of clinical applications, including:
 - **Infectious Disease Diagnosis:** Serological tests are commonly used to diagnose viral and bacterial infections, such as HIV, hepatitis, syphilis, and Lyme disease.
 - **Immunity Assessment:** Serology is used to assess immunity to certain diseases, such as measles, mumps, rubella, and varicella (chickenpox), through antibody testing.
 - **Autoimmune Disease Diagnosis:** Serological tests help diagnose autoimmune diseases by detecting autoantibodies directed against the body's own tissues.
 - **Allergy Testing:** Serological tests can identify allergen-specific antibodies (IgE) to diagnose allergies to foods, pollen, animal dander, and other substances.
 - **Cancer Diagnosis and Monitoring:** Serological tumor markers are used to detect and monitor certain types of cancers, such as prostate-specific antigen (PSA) for prostate cancer and CA-125 for ovarian cancer.

Overall, serology plays a vital role in diagnosing and managing a wide range of medical conditions, contributing to patient care and public health efforts.

Tests performed in Serology Laboratory –

1.	Tridot Test – HIV, HCV and HBS ag
2.	VDRL
3.	Dengue
4.	Typhoid
5.	Chikungunya
6.	Malaria
7.	RA Factor
8.	CRP
9.	ASO
10.	WIDAL

Table 4

Mostly diagnosis in Serology Lab is done using Strip Tests. Strip tests, also known as rapid diagnostic tests (RDTs) or lateral flow assays, are commonly used for quick and simple detection of antibodies or antigens in patient samples. These tests are designed to provide rapid results without the need for specialized laboratory equipment or trained personnel, making them particularly useful in settings with limited resources or where immediate diagnosis is critical.

Steps followed for Strip Testing are as follows:

- Sample Application: A small amount of the patient's blood, serum, plasma, urine, or other bodily fluid is applied to the sample pad of the test strip.
- Sample Migration: The sample flows along the strip by capillary action, carrying any target antibodies or antigens present in the sample.
- Detection Zone: As the sample migrates along the strip, it encounters pre-coated capture molecules (antibodies or antigens) immobilized in specific regions of the strip, known as the detection zone.
- Immunoassay Reaction: If the target antibodies or antigens are present in the sample, they bind to the corresponding capture molecules in the detection zone, forming a visible test line.
- Control Zone: In addition to the test line(s), the strip usually contains a control zone with immobilized molecules that capture excess labeled reagents from the sample. This control line should always appear, serving as an internal procedural control to validate the test's proper function.
- Result Interpretation: After a specified incubation period, the appearance or absence of colored lines in the detection and control zones is interpreted visually. The presence of both the test line and the control line indicates a positive result, while the absence of the test line (with a visible control line) indicates a negative result.

Strip tests in serology labs are used for various purposes, including:

- Infectious Disease Screening: Detection of antibodies or antigens associated with infectious diseases such as HIV, hepatitis, malaria, dengue fever, and syphilis.
- Immunity Assessment: Rapid determination of immunity status against specific pathogens, such as measles, mumps, rubella, and varicella.
- Point-of-Care Testing: Rapid diagnosis of acute infections or monitoring of chronic diseases at the point of care, such as in clinics, emergency departments, or field settings.
- Pregnancy Testing: Detection of human chorionic gonadotropin (hCG) in urine samples to confirm pregnancy.

Therefore strip tests offer a convenient and effective means of conducting rapid serological assays for diagnostic and screening purposes, complementing traditional laboratory methods.

Other Types of Tests done in Serology Lab are:

1. CRP Latex Test

The CRP latex test, also known as latex agglutination test for C-reactive protein (CRP), is a rapid diagnostic test used to detect the presence of CRP in patient samples, typically serum or plasma. This test is based on the principle of antigen-antibody interaction, where latex particles coated with anti-CRP antibodies are mixed with the patient's sample.

Steps in CRP latex test are:

Preparation of Reagents: Latex particles are coated with antibodies specific to CRP. These latex reagents are then prepared and stored under appropriate conditions.

Sample Collection: A small amount of the patient's serum or plasma is collected and transferred to a test tube or microplate well.

Addition of Latex Reagent: A few drops of the latex reagent containing anti-CRP antibodies are added to the patient sample. The mixture is gently mixed by swirling or pipetting to ensure thorough mixing of the latex reagent with the patient sample.

Incubation: The mixture is allowed to incubate for a specified period of time, typically around 2-5 minutes, at room temperature. During this incubation period, if CRP is present in the patient sample, it will bind to the anti-CRP antibodies on the surface of the latex particles.

Agglutination: After incubation, the test is observed for the presence of visible agglutination, which appears as clumping or aggregation of the latex particles. Agglutination indicates a positive result, suggesting the presence of CRP in the patient sample.

Interpretation of Results: The results of the CRP latex test are typically interpreted visually. The presence of agglutination within the specified incubation time indicates a positive result, suggesting elevated levels of CRP in the patient sample. Lack of agglutination within the specified time frame indicates a negative result, suggesting absence or low levels of CRP.

Note- ASO Latex Test is performed using similar technique.

2. WIDAL Test

The Widal test is a serological test used for the diagnosis of typhoid fever and other salmonella infections. It detects antibodies produced by the immune system in response to *Salmonella enterica* serotypes Typhi and Paratyphi, the bacteria responsible for causing typhoid fever and paratyphoid fever, respectively.

Here's how the Widal test is usually performed:

Sample Collection: Blood samples are collected from the patient suspected of having a *Salmonella* infection. Usually, two samples are collected: an acute-phase sample obtained during the early stage of the illness and a convalescent-phase sample obtained 10-14 days later.

Preparation of Antigens: *Salmonella* antigens from specific serotypes (O antigen and H antigen) are prepared in the laboratory. These antigens represent surface components of the *Salmonella* bacteria that stimulate the immune system to produce antibodies.

Serological Testing: The patient's serum (the liquid portion of blood containing antibodies) is tested against *Salmonella* antigens in a series of dilutions. The Widal test typically measures antibodies against the O antigen and H antigen of *Salmonella* Typhi and Paratyphi.

Agglutination Reaction: If the patient's serum contains antibodies specific to *Salmonella* Typhi or Paratyphi antigens, a visible reaction called agglutination occurs when the antibodies bind to the antigens. Agglutination leads to the formation of clumps or aggregates in the test tube, indicating a positive reaction.

Interpretation of Results: The results of the Widal test are interpreted based on the presence or absence of agglutination and the antibody titer (the highest dilution of serum showing agglutination). A significant rise in antibody titer between acute and convalescent samples suggests an active *Salmonella* infection.

It's important to note that the Widal test has limitations and can produce false-positive or false-negative results. Factors such as cross-reactivity with antibodies from other infections, variations in antibody response among individuals, and prior immunization with typhoid vaccine can affect test accuracy.

Due to these limitations, the Widal test is often used in conjunction with other diagnostic methods, such as blood culture, stool culture, and molecular tests (e.g., PCR), for the accurate diagnosis of typhoid fever and paratyphoid fever. Additionally, interpretation of Widal test results should consider clinical symptoms, epidemiological factors, and other laboratory findings to make a definitive diagnosis and guide patient management.

Virology and Molecular

Virology and molecular biology are two distinct but interconnected fields of study within the broader field of microbiology.

Virology: Virology is the study of viruses, which are small infectious agents that replicate only inside the living cells of organisms. Virologists investigate various aspects of viruses, including their structure, classification, replication mechanisms, pathogenesis (how viruses cause disease), host-virus interactions, epidemiology, and methods for prevention and control. Key techniques used in virology include viral isolation and culture, electron microscopy, serological assays (such as ELISA and neutralization assays), molecular methods (such as PCR and sequencing), and animal models for studying viral infections.

Molecular Biology: It is studying biological processes at molecular level. It is primarily concerned with the relationships, structure, and functions of biomolecules, including proteins, lipids, DNA, and RNA. Molecular biologists investigate various cellular processes, including DNA replication, transcription, translation, gene expression regulation, signal transduction, and cell cycle control. Molecular biology techniques enable scientists to manipulate and analyze biomolecules, understand their roles in cellular function and disease, and develop novel therapeutic approaches. Key techniques used in molecular biology include polymerase chain reaction (PCR), DNA sequencing, recombinant DNA technology, gene cloning, gene expression analysis (such as RT-PCR and northern blotting), genome editing (such as CRISPR-Cas9), and bioinformatics for analyzing large-scale molecular data.

In the context of virology, molecular biology plays a crucial role in studying viral genomes, gene expression, replication mechanisms, evolution, and virulence factors. Molecular techniques are used to detect and identify viruses, characterize viral strains, study viral-host interactions, develop vaccines, and design antiviral drugs. For example, PCR-based methods are commonly used to detect viral nucleic acids in clinical samples, while sequencing technologies enable researchers to analyze viral genomes and track viral evolution.

Overall, virology and molecular biology are interdisciplinary fields that intersect in the study of viruses and their molecular mechanisms, with the aim of understanding and combatting viral infections and associated diseases.

List of Tests performed in the Virology and Molecular Laboratory are :

	Tests	Techniques available
1.	Covid-19	RT-PCR
2.	Hepatitis-B	ELISA and RT-PCR
3.	Hepatitis-C	ELISA and RT-PCR

Table 5**COVID-19**

COVID-19, short for "coronavirus disease 2019," is an infectious disease caused by the novel coronavirus SARS-CoV-2. The virus was first identified in December 2019 in Wuhan, Hubei province, China, and has since spread globally, leading to the COVID-19 pandemic.

Some key points about COVID-19:

Transmission: COVID-19 primarily spreads through respiratory droplets when an infected person coughs, sneezes, or talks. It can also spread by touching surfaces contaminated with the virus and then touching the face, particularly the mouth, nose, or eyes.

Symptoms: The symptoms of COVID-19 vary widely but commonly include fever, cough, shortness of breath, fatigue, muscle or body aches, headache, new loss of taste or smell, sore throat, congestion or runny nose, nausea or vomiting, and diarrhea. Some individuals may experience severe symptoms, including difficulty breathing, chest pain, confusion, or bluish lips or face, which may indicate severe pneumonia or acute respiratory distress syndrome (ARDS).

Diagnosis: COVID-19 is diagnosed through laboratory testing of respiratory samples, such as nasopharyngeal or oropharyngeal swabs, using techniques like reverse transcription-polymerase chain reaction (RT-PCR) to detect the genetic material of the virus.

Prevention: Prevention measures include wearing masks, practicing physical distancing, washing hands frequently with soap and water, using hand sanitizer with at least 60% alcohol, avoiding large gatherings, and staying home when sick. Vaccination against COVID-19 is also a crucial prevention strategy to reduce the spread of the virus and protect individuals from severe illness and complications.

Treatment: Treatment depends on the condition of the Patient. Severe cases may require hospitalization, including intensive care and mechanical ventilation. Several antiviral drugs, monoclonal antibodies, and corticosteroids have been authorized or approved for the treatment of COVID-19 in certain cases.

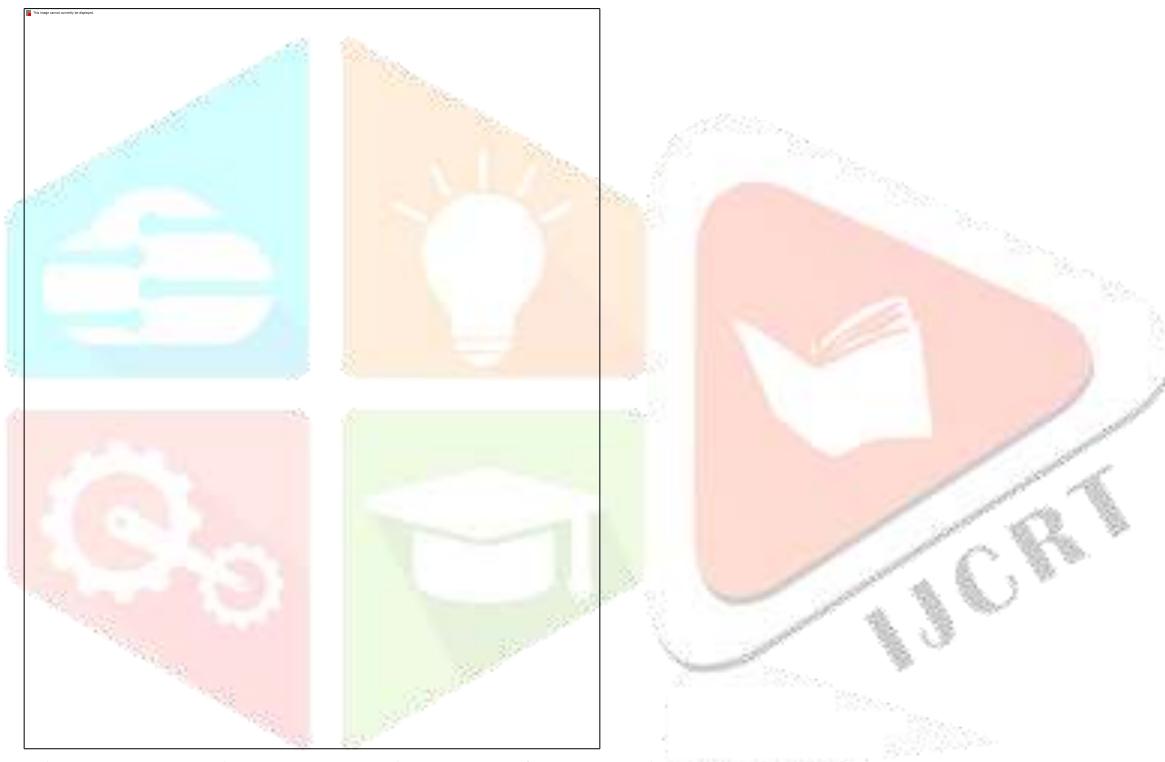
Vaccination: Vaccination campaigns against COVID-19 have been launched globally, with several vaccines authorized for emergency use or approved for full licensure. Vaccination helps build immunity against the virus, reducing the risk of infection, severe illness, and transmission within communities.

The COVID-19 pandemic has had far-reaching impacts on public health, economies, and societies worldwide, leading to widespread disruptions in daily life, healthcare systems, and global trade. Measures are being taken to better understand the virus and its variants.

And being a Virology Student it was a wonderful opportunity for Me to be able to work with the Patient samples in Sharda Hospitals Virology and Molecular Laboratory. I was able to perform DNA extraction , prepare mastermix and then do RT-PCR for the qualitative and quantitative analysis using OP swab sample of Patients. And then report back the results.

Now talking about the process of sample collection to reporting the Test results in detail.

SAMPLE COLLECTION (OP & NP Swab)


The collection of an oropharyngeal (OP) swab for COVID-19 testing involves the following steps:

- Preparation: The healthcare worker performing the collection should ensure they are wearing appropriate personal protective equipment (PPE), including gloves, a gown, a surgical mask, and eye protection.
- Patient Preparation: Instruct the patient to tilt their head slightly backward (about 70 degrees) open their mouth wide. It may be helpful to provide guidance or demonstration to ensure the patient understands the procedure.
- Swab Selection: Select a sterile swab suitable for collecting specimens from the oropharynx, Nasopharyngeal (NP) swabs or flocked swabs are often used for this purpose. The swab should have a flexible shaft and a soft tip to minimize discomfort to the patient.
- Swab Insertion: Using a tongue depressor if necessary to help visualize the oropharynx, gently insert the swab into the back of the throat, avoiding contact with the teeth, gums, tongue, or uvula. It is important to reach the posterior pharyngeal wall and tonsillar areas to ensure an adequate sample is collected.
- Sampling: Once the swab is in position, rotate it gently against the mucosa for about 10-15 seconds to absorb secretions and collect epithelial cells. Ensure the swab tip remains in contact with the mucosa throughout the sampling process.
- Swab Removal: Carefully remove the swab from the oropharynx without touching any surrounding structures or surfaces. Avoid coughing, gagging, or spitting during swab removal to prevent contamination of the specimen.
- Swab Handling: Place the swab into a sterile transport tube containing viral transport medium (VTM) or saline solution to preserve the viability of the specimen and prevent it from drying out. Ensure the swab is properly labeled with patient identification information and other relevant details.
- Transportation: Seal the transport tube securely and transport it to the laboratory for testing as soon as possible. Maintain appropriate temperature conditions (2-8 degrees celsius for upto 72 Hours and if storing for longer keep specimen at -70 degree if) during transportation to ensure the stability of the specimen.
- Disposal: Dispose of used PPE and other potentially contaminated materials according to healthcare facility protocols and infection control guidelines.

DNA EXTRACTION

1. Sample is received in a nutrient media in a VTM vial.
2. After mixing the sample is taken in 2ml eppendorf tube.
3. Then 200 microliters of sample is mixed with 100 microliters of Lysis Buffer.
4. Then vortex for 1 Min.

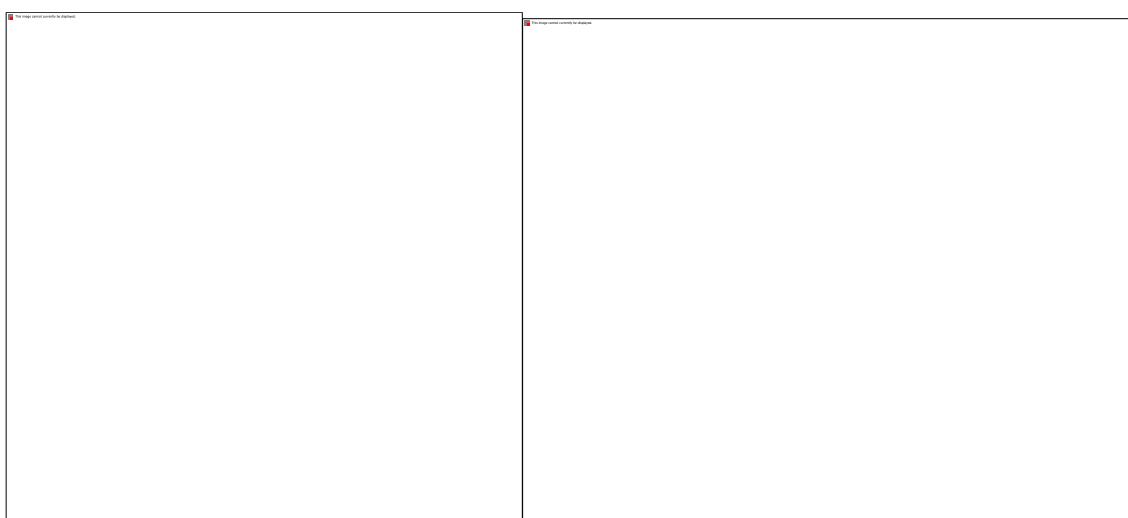

5. Let it then incubate for 10 Min at room temperature.
6. Then add 270 microliters of ethanol.
7. Then again vortex for a minute.
8. Next Step is to transfer in a column.
9. Then centrifuge at 12500 rpm for 2 Min and discard the lower column.
10. Then add W1(Wash Buffer 1) around 500 microliters.
11. Again centrifuge for 2 Min at 12500 rpm speed.
12. Next add W2(Wash Buffer 2)(500 microliters) and centrifuge for 2 Min at 12500 rpm speed.
13. Centrifuge again to make sure there is no contamination and all the particles not required are settled and separated.
14. Lastly add elution buffer(60 microliters) and centrifuge for 2 Min at 12500 rpm . And discard the column tip.

Figure 2:- DNA Extracted (bottom of the tube)

MASTERMIX

Biogenix Covid 19 RT-PCR kit is used. Two genes are tested with the Biogenix Covid-19 RT-PCR Test Kit. By using the given PCR reaction mix, a real-time PCR equipment may detect a rising fluorescence signal, which can be used to quantitatively monitor the amplification of the template. The PCR detection system incorporates an endogenous internal control primer and probe mix. To prevent false negative results, the precision of the extraction and sample processes is provided by the outcome of internal control.

Figure 3:- Biogenix RT-PCR Kit For COVID-19

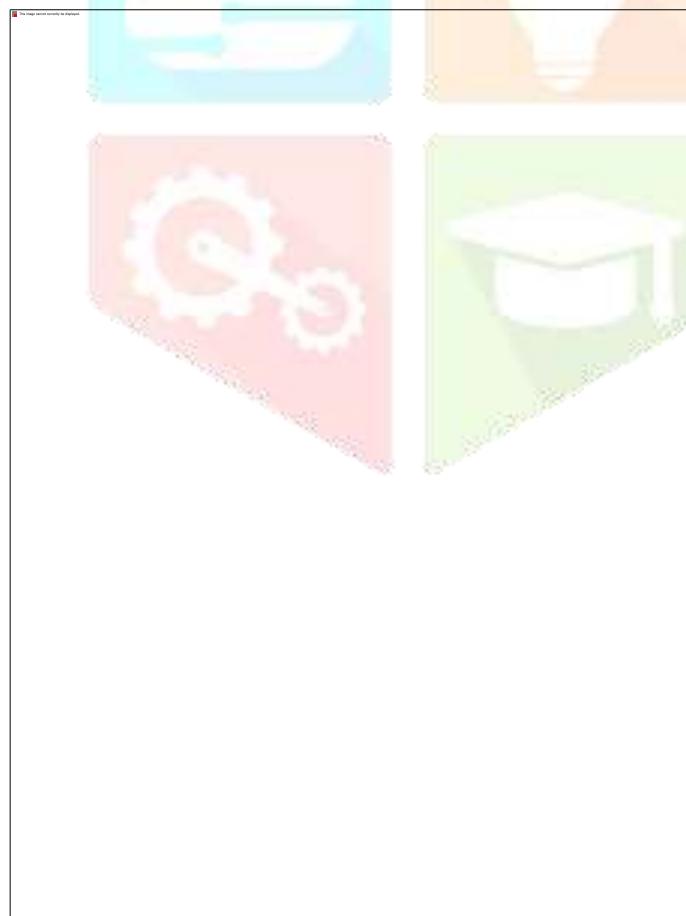
Calculations

- Enzyme mix(solid) for 100 samples is taken.
- Then add enzyme mix buffer (450 microliters) and RNAase free Water (550 microliters).
- For example – if making for 5 samples of Patients.
5 samples + controls(PC and NC)
That is mix required will be for 7 samples.
For 1 sample mix required is 10 microliters. So total mastermix required will be 70 microliters.
For individual sample – first add master mix (10 microliters) and then add RNA sample (10 microliters).
For Positive control- first add master mix(10 microliters) then RNAase Free Water(5 microliters) and lastly the Positive control(5 microliters).
For Negative control- first add Master Mix(10 microliters) and then add Negative control(10 microliters).
* Primer Probe mix is added to all(1 microliter).

RT-PCR

Reverse Transcription Polymerase Chain Reaction (RT-PCR) is a molecular biology technique used to amplify and detect RNA molecules. It is widely used in research laboratories, diagnostic laboratories, and clinical settings for various applications, including gene expression analysis, viral detection, and genetic testing.

Working of RT-PCR -


1. Reverse Transcription (RT): The first step of RT-PCR involves the conversion of RNA into complementary DNA (cDNA) using the enzyme reverse transcriptase. This process is known as reverse transcription. Typically, a primer complementary to a specific region of the RNA molecule is used to initiate cDNA synthesis.
2. PCR Amplification: The cDNA synthesized in the reverse transcription step serves as a template for PCR amplification. PCR (Polymerase Chain Reaction) is a technique that uses DNA polymerase enzyme to selectively amplify a specific DNA sequence. In RT-PCR, primers specific to the target

RNA sequence are used to amplify the corresponding cDNA fragment. The reaction mixture also contains nucleotides (dNTPs) and buffer components necessary for DNA synthesis.

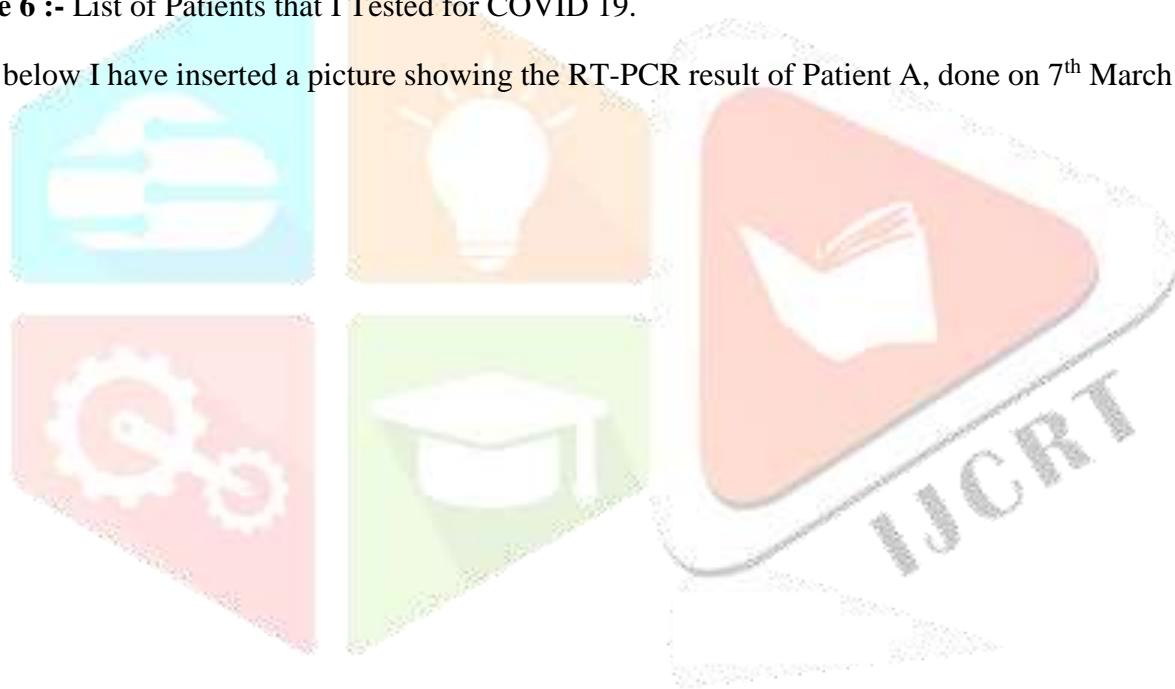
3. Detection: Various methods can be used to detect the amplified DNA product in real-time or at the end of the PCR reaction. These probes emit fluorescence when they bind to the amplified DNA, and the fluorescence intensity is measured at each cycle of PCR. The fluorescence signal is proportional to the amount of amplified DNA, allowing for quantification of the target RNA.
4. Analysis: After PCR amplification, the results are analyzed to determine the presence or absence of the target RNA and to quantify its abundance if quantitative analysis was performed. This information can be used for various applications, such as gene expression profiling, viral load quantification, detection of infectious agents, and genetic testing.

RT-PCR is a versatile and sensitive technique that has revolutionized molecular biology and diagnostics. It is widely used in biomedical research, clinical diagnostics, and public health for the detection and quantification of RNA molecules in various biological samples.

Here RT-PCR is done using the CFX 96 Touch real-time PCR system. It is a potent, accurate, and adaptable RT PCR system. It is a six-channel (five colours and one FRET channel) RT PCR device delivers sensitive, dependable detection for simplex or multiplex reactions by combining cutting-edge optical technology with exact temperature control.

Figure 4:- BioRad's CFX96 RT-PCR Machine

RESULT


The approximate samples received for covid -19 were 4-5 per Day.

All the samples I tested came Negative.

S.NO.	PATIENT NAME	RESULT
1.	Patient A	Negative
2.	Patient B	Negative
3.	Patient C	Negative
4.	Patient D	Negative
5.	Patient E	Negative
6.	Patient F	Negative
7.	Patient G	Negative
8.	Patient H	Negative
9.	Patient I	Negative
10.	Patient J	Negative
11.	Patient K	Negative

Table 6 :- List of Patients that I Tested for COVID 19.

Here below I have inserted a picture showing the RT-PCR result of Patient A, done on 7th March 2024.

Figure 5:- COVID-19 RT-PCR Result

HBV (Hepatitis B)

Hepatitis B is a viral infection that affects the liver, caused by the hepatitis B virus (HBV). It can cause both acute and chronic liver disease, ranging from mild illness to a serious, lifelong condition. The partly double-stranded DNA virus known as hepatitis B virus (HBV) belongs to the Hepadnaviridae family of viruses and is a species of the genus Orthohepadnavirus. The hepatitis B virus is the cause of this illness.

Transmission:

- through contact with infected Bodily fluids.
- Unprotected sexual contact with an infected person
- Sharing sharp hygiene products with a personinfected
- From mother to baby during childbirth (perinatal transmission)

- Accidental needle sticks or exposure to infected blood in healthcare settings

Symptoms: Many people with hepatitis B do not experience symptoms, especially during the acute phase of the infection. If there are symptoms, they can include:

- Fatigue
- Jaundice (yellowing of the skin and eyes)
- Abdominal pain or discomfort
- Loss of appetite
- Nausea and vomiting
- Joint pain
- Dark urine
- Clay-colored stools

Diagnosis: Hepatitis B is diagnosed through blood tests that detect specific antigens and antibodies associated with the virus. These tests include:

- HBsAg (hepatitis B surface antigen) test
- Anti-HBc (hepatitis B core antibody) test
- Anti-HBs (hepatitis B surface antibody) test
- HBV DNA test (quantitative or qualitative)

Complications: Chronic hepatitis B infection can lead to serious complications, including:

- Chronic hepatitis (inflammation of the liver)
- Cirrhosis (scarring of the liver)
- Liver failure
- Hepatocellular carcinoma (liver cancer)

Prevention: The hepatitis B vaccine is highly effective at preventing hepatitis B infection. It is recommended for all infants at birth, as well as for children and adults who are at increased risk of infection. Other preventive measures include practicing safe sex, avoiding sharing needles or other drug paraphernalia, and ensuring that healthcare workers follow standard precautions to prevent needle-stick injuries and other occupational exposures.

Treatment: Treatment for hepatitis B depends on whether the infection is acute or chronic. Acute hepatitis B usually does not require specific treatment and resolves on its own. For chronic hepatitis B, antiviral medications may be prescribed to suppress the virus and reduce the risk of liver damage.

SAMPLE COLLECTION

Collecting blood for hepatitis B virus (HBV) testing follows standard protocols for blood collection to minimize the risk of contamination and ensure accurate results. The general process is as follows:

Preparation:

Wash hands thoroughly with soap and water.

Put on gloves and any other necessary personal protective equipment (PPE) to prevent exposure to bloodborne pathogens.

Identify the Patient:

Check the patient's Name (by making sure of less then Three unique identifiers that is, name, DOB and medical record number).

Selecting Collection Site:

Choose an appropriate vein for venipuncture

Prepare Collection Equipment:

Gather necessary supplies, including a sterile blood collection tube, a needle and syringe or vacutainer system, alcohol swabs, adhesive bandages, and a tourniquet.

Patient Preparation:

Apply a tourniquet proximal to the intended venipuncture site to engorge the veins.

Clean the Collection Site:

Cleanse the skin with an alcohol swab using a circular motion, starting at the center and moving outward. Allow the site to air dry completely to prevent contamination.

Perform Venipuncture:

With sterile technique, perform venipuncture using a needle and syringe or vacutainer system. Ensure proper needle size and angle for the patient's vein.

Collect the required volume of blood into the appropriate collection tube(s). For HBV testing, typically a plain (non-additive) tube or a serum separator tube is used.

Remove the tourniquet once blood flow is established.

Complete the Collection:

Once the required volume of blood is collected, release the tourniquet and withdraw the needle smoothly.

Apply gentle pressure to the venipuncture site with gauze or a cotton ball to promote clotting and prevent hematoma formation.

Dispose of the needle safely in a sharps container.

Labeling and Documentation:

Label the blood collection tubes with the patient's name, date of birth, and collection date/time.

Complete any necessary paperwork or electronic documentation to ensure proper tracking of the sample.

Post-Collection Care:

Assist the patient if needed and provide instructions for post-collection care.

Dispose of any used materials according to biohazard waste disposal protocols.

DNA EXTRACTION

1. To 140 microliters of sample (serum , separated after centrifugation of blood) add 200 microliters of Protease K and 200 microliters of AL Lysis Buffer.
2. Do vortex for 30 Sec-1 Min.
3. Incubate at room Temperature for 10 Min.
4. Add 200 microliters of ethanol and vortex again.
5. Then transfer to column and centrifuge at 12500 rpm for 2 Min.
6. Next , discard column and transfer the remaining into tube.
7. Centrifuge at 12500 rpm for 2 Min.
8. Now add 500 microliters of Wash Buffer 1 and centrifuge again(12500rpm for 2 Min).
9. Then add 500 microliters of Wash Buffer 2.
10. Centrifuge at 12500 rpm for 2 Min.
11. In this step dry wash.
12. Lastly add 200 microliters of elution buffer.
13. After waiting for 1 Min , centrifuge at 12500 rpm for 2 Min.

MASTER MIX

The kit used for mastermix is of Genome Diagnostics.

Components :-

- 5 standard
- 1 premix vial(DNTP, Primer Probe , Buffer)
- 1 MgCl2
- 1 Internal Control
- 1 Water

Calculation:-

- Total Volume in 1 sample is 25 Microliters.

Premix + MgCl2 + IC +DNA

$$12 + 2.5 + 0.5 + 1 = 25 \text{ Microliters}$$

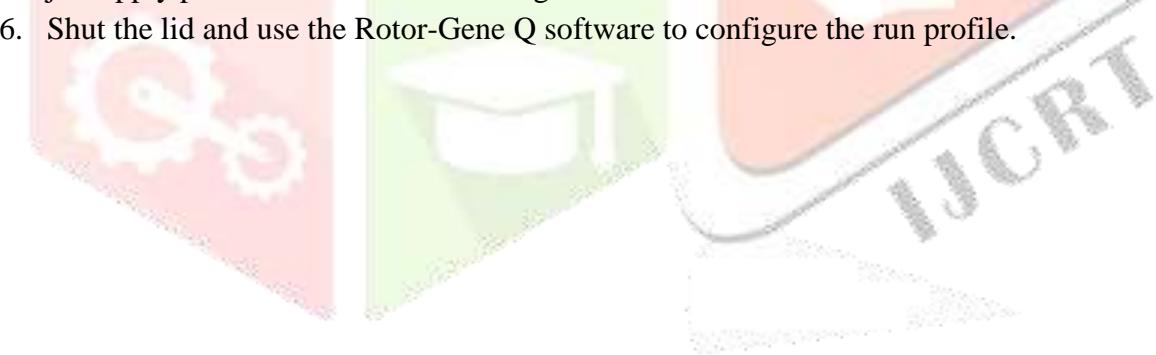
For example

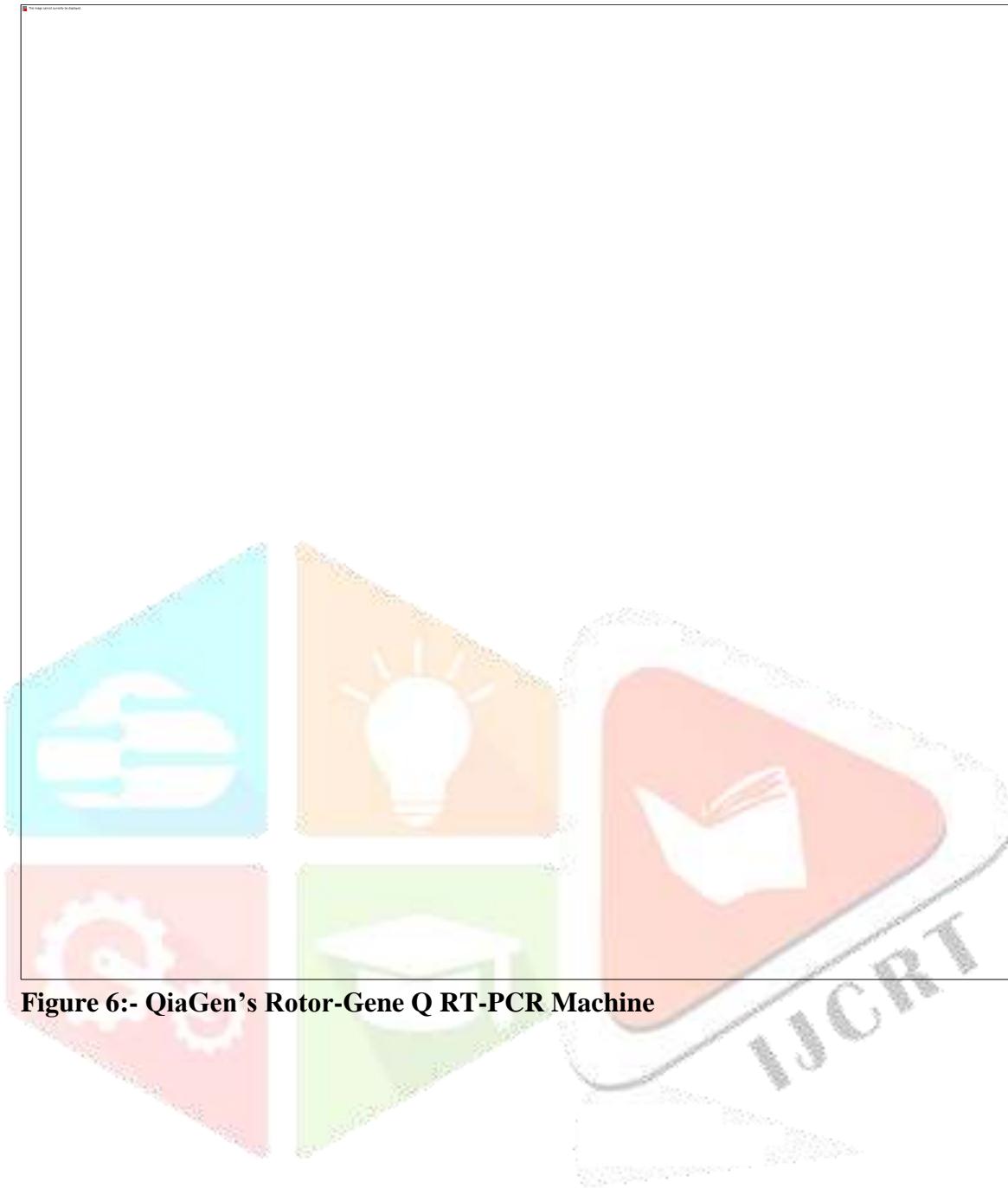
If done for 5 Patient samples

Mix will be made for 11 samples(5 sample of Patients + 5 Positive controls +1 Internal control)

Total Mix required will be $12 \times 11 + 2.5 \times 11 + 0.5 \times 11 = 165$ microliters

RT-PCR


RT-PCR for HBV is done using QIAGENs ROTOR GENE Q. As a precise science, quantitative real-time PCR places a great deal of demands on the chemistry, software, and equipment. For accurate and timely quantitative analysis, high thermal and optical uniformity, brief equilibration durations, and quick ramping rates are essential. Additionally, sensitivity, specificity, and speed are significantly influenced by the DNA polymerase's performance and constituents of a response. The Rotor-Gene Q is made accordingly and provides the best features.

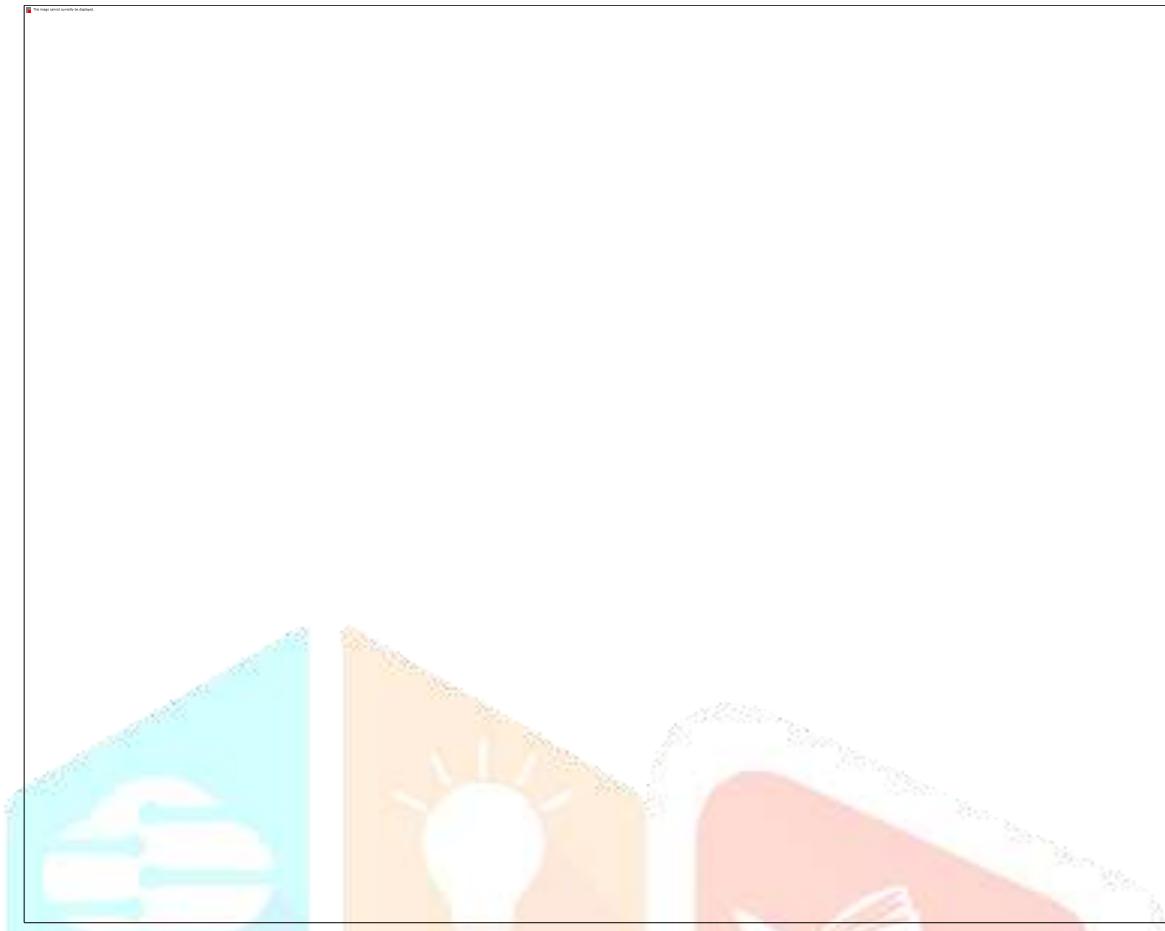

Reaction-setup

The 72-Well Rotor reaction setup process is outlined in the following protocol. Reaction setup can be accomplished using the same process with the 36-Well Rotor and the relevant accessories.

Protocol:-

1. After aliquoting the reaction components, insert the Strip Tubes into the Loading Block.
2. Tightly fit the Caps onto the Strip Tubes, then visually check to make sure the seal is tight.
3. Make sure each strip tube is positioned appropriately as you insert it into the 72-Well Rotor. If samples are not positioned appropriately in the rotor, they will not align over the detecting system as best they can. The obtained fluorescence signal and detection sensitivity may decrease as a result. The instrument includes a Rotor Holder that makes tube loading simple.
4. Push the three locating pins through the rotor's outer holes to attach the 72-Well Rotor Locking Ring to the rotor. During a run, the Locking Ring makes sure that the caps stay on the tubes.
5. Using the locating pin on the rotor hub, click the assembly into the Rotor-Gene Q chamber. To extract, just apply pressure to the rotor hub to get it to release and come out.
6. Shut the lid and use the Rotor-Gene Q software to configure the run profile.

Figure 6:- QiaGen's Rotor-Gene Q RT-PCR Machine



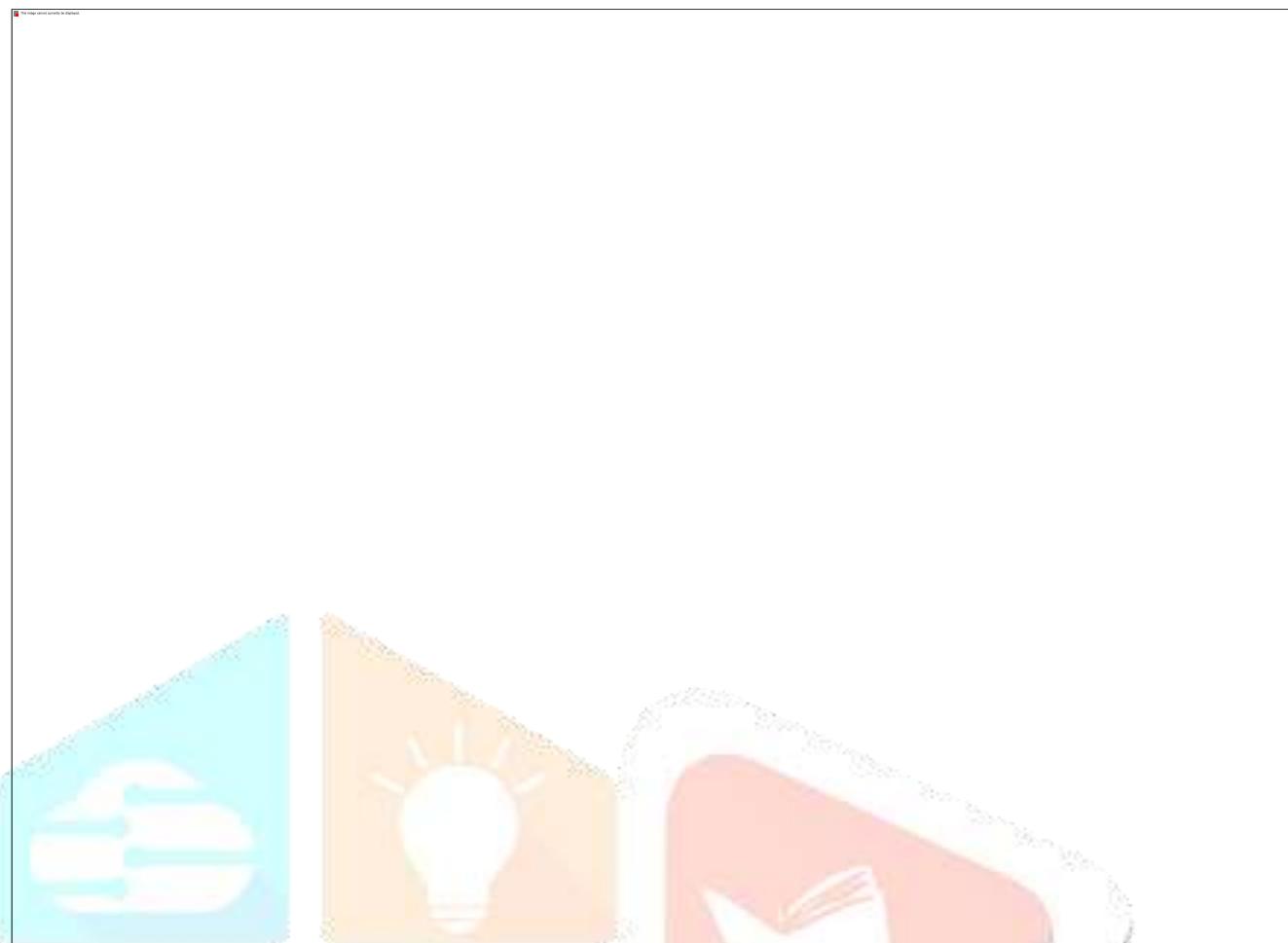


Figure 7:- Sample Disc for Rotor Gene Q

RESULT

Figure 8:- RT-PCR Result For HBV Sample

The approximate samples received for Hepatitis B were 4-7 per Day.

With approx. 1-3 Positive.

S.NO.	PATIENT NAME	RESULT
1.	Patient A	Positive
2.	Patient B	Negative
3.	Patient C	Negative
4.	Patient D	Positive
5.	Patient E	Negative
6.	Patient F	Negative
7.	Patient G	Negative
8.	Patient H	Negative

Table 7 :- List of Patients I Tested for HBV.

HEPATITS-C DISEASE

Hepatitis C and some malignancies, including human lymphomas and hepatocellular carcinoma, also go by the name HCC. These illnesses are brought on by the hepatitis C virus.(HCV) spreads through contaminated blood. Many people with hepatitis C don't have any symptoms for years, even decades. However, over time it can lead to liver cirrhosis, liver cancer, and other complications.

Direct-acting antiviral medications can cure the infection in most people. These medications are typically taken for several weeks to a few months, depending on the specific regimen prescribed by a healthcare provider.

Prevention of hepatitis C involves avoiding contact with infected blood. This includes not sharing needles or other drug paraphernalia, using protection during sex, and ensuring that any medical equipment that may come into contact with blood is properly sterilized.

It's important for anyone at risk of hepatitis C to get tested, as early detection can lead to better outcomes.

DNA EXTRACTION

1. Take 140 microliters of sample and add 5.6 microliters carrier RNA and 560 microliters AVL Lysis Buffer.
2. Then vortex machine is used for 30 Sec- 1 Min.
3. And incubate at room Temperature for 10 Min.
4. Next add ethanol(560 microliters).
5. And using vortex again .
6. Now transfer to column.
7. And centrifuge at 12500rpm for 10 Min.
8. After discarding column transfer the remaining into tube.
9. Again centrifuge at 12500 rpm for 2 Min.
10. Add wash buffer1 (500 microliters) and centrifuge at 12500 rpm for 2 Min.
11. Then add Wash buffer 2(500 microliters) and centrifuge at 12500 rpm for 2 Min.
12. Dry wash followed by centrifugation(12500 rpm for 2 Min).
13. Lastly add elution buffer(60 microliters).
14. And after waiting for 1 Min, centrifuge at 12500 rpm for 2Min.
15. Nucleic Acid is seen in a tiny amount at the bottom of tube.

MASTER MIX

The kit used is of Geno-Sen's HCV Real Time PCR RG Kit.

Total Mix=25 Microliters(per sample)

Pre mix =7 Microliters

MgCl₂ = 2.5 Microliters

IC = 0.5 Microliters

That is 10 Microliters of Master Mix + 15 Microliters of RNA = 25 Microliters

For example :- if 2 samples of Patients are there the mix is prepared for 4, including the PC and NC.

Then ,

Premix= 7×4

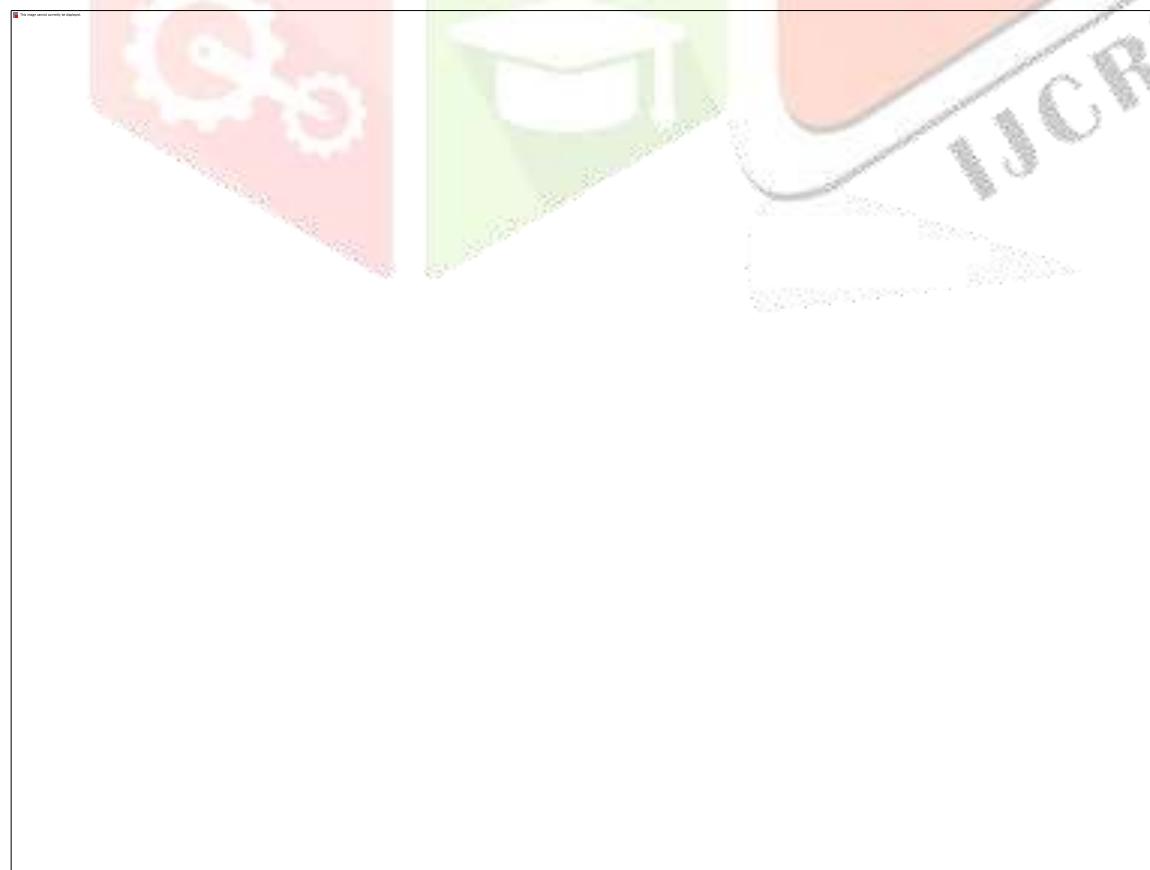
MgCl₂ = 2.5×4

IC = 0.5^x4

Total Mix = 40 Microliters.

RT-PCR

RT-PCR is done using the Rotor Gene Q machine.


RESULT

The approximate samples received for Hepatitis C were 2-4 per Day.

With approx. 1-2 Positive.

S.NO.	PATIENT NAME	RESULT
1.	Patient A	Negative
2.	Patient B	Negative
3.	Patient C	Negative
4.	Patient D	Positive
5.	Patient E	Negative
6.	Patient F	Negative
7.	Patient G	Negative

Table 8:- List of Patients I Tested for HCV.

Figure 9 :- RT-PCR Result for HCV samples.

MYCOLOGY

Mycology is the branch of biology concerned with the study of fungi, including their genetic and biochemical properties, taxonomy, ecology, and interactions with other organisms. Fungi are a diverse group of organisms that include mushrooms, molds, yeasts, and more.

Mycologists study various aspects of fungi, including their role in ecosystems, their interactions with plants and animals (both beneficial and harmful), their use in biotechnology and medicine, and their potential as sources of food and biofuels.

Some key areas of mycological research include:

Taxonomy and classification: Mycologists classify fungi into different groups based on their morphological, physiological, and genetic characteristics.

Ecology: Studying how fungi interact with other organisms and their environment, including their roles as decomposers, symbionts (such as mycorrhizal fungi), and pathogens.

Medical mycology: Investigating fungal infections in humans and animals, including their prevention, diagnosis, and treatment.

Industrial applications: Exploring the use of fungi in various industries, such as food production (e.g., fermentation of beer and cheese), bioremediation (using fungi to clean up environmental pollutants), and the production of enzymes and pharmaceuticals.

Evolution and genetics: Understanding the evolutionary relationships among fungi and the genetic mechanisms underlying their diverse traits and adaptations.

List of Tests done in the Mycology Laboratory :-

1.	KOH Mount
2.	LPCB(Lacto-Phenol Cotton Blue)
3.	India Ink
4.	Fungal Culture
5.	Germ Tube Test(GTT)
6.	Urine for Fungal Culture
7.	Wood's Lamp Examination

Table 6

The classification of fungi has evolved over time as scientists have gained a better understanding of their diversity and relationships. Here is a simplified overview of the major taxonomic groups of fungi:

Division Zygomycota: This group includes fungi that typically reproduce sexually by forming thick-walled zygosporangia. Examples include bread molds (*Rhizopus*) and the common black bread mold (*Mucor*).

Division Ascomycota(sac-like): This division includes a wide range of fungi, including yeasts (e.g., *Saccharomyces cerevisiae*), molds (e.g., *Penicillium*), and many plant pathogens (e.g., powdery mildews and ergot fungi).

Division Basidiomycota: Basidiomycetes, or club fungi, produce sexual spores (basidiospores) on club-shaped structures called basidia. This division includes mushrooms (e.g., *Agaricus*), bracket fungi (e.g., *Ganoderma*), and rusts and smuts (plant pathogens).

Division Glomeromycota: This group includes arbuscular mycorrhizal fungi, which form mutualistic symbiotic relationships with the roots of most land plants, aiding in nutrient uptake.

Division Chytridiomycota: Chytrids are primitive fungi characterized by their flagellated spores (zoospores). Some chytrids are saprophytic, while others are parasitic and can infect amphibians, causing diseases such as chytridiomycosis.

Division Neocallimastigomycota: These fungi are found in the digestive tracts of herbivores, where they play a role in breaking down plant material through anaerobic fermentation.

Additionally, there are other groups of fungi, such as the Blastocladiomycota and the Cryptomycota, which are sometimes classified separately or grouped with other divisions.

It's important to note that fungal classification is a dynamic field, and advances in molecular biology and phylogenetics continue to refine our understanding of fungal diversity and relationships.

KOH Mount Preparation

The potassium hydroxide (KOH) mount preparation is a commonly used technique in mycology for the microscopic examination of fungal specimens. Here's how it's typically done:

1. Specimen collection: The first step is to collect a sample of the suspected fungal material. This could be skin scrapings, nail clippings, hair samples, or any other relevant specimen from the patient or the environment.
2. Preparation of the KOH solution: A 10-20% solution of potassium hydroxide (KOH) is commonly used. This solution helps to dissolve keratin and other organic material, making fungal elements more visible under the microscope. The KOH solution is prepared by dissolving KOH pellets or flakes in distilled water.
3. Mixing the specimen with KOH
4. Covering the specimen: A coverslip is placed over the specimen and gently pressed down to spread the material evenly. Excess KOH solution may overflow, so care should be taken to avoid spilling.
5. Heating (optional): In some cases, gentle heating of the slide over a flame or a hot plate may be done to accelerate the process of dissolving organic material. However, this step should be performed cautiously to avoid overheating and damaging the specimen.
6. Observation under the microscope: The slide is then examined under a microscope, typically using both low and high magnifications. Fungal elements such as hyphae, spores, and other structures become more visible after treatment with KOH, aiding in the identification of the fungal species.
7. Recording observations: The findings are recorded, which may include the presence or absence of fungal elements, their morphology, and any other relevant details.

The KOH mount preparation is a simple yet effective technique for the rapid diagnosis of superficial fungal infections such as dermatophytosis (ringworm) and candidiasis. It helps to visualize fungal structures and guide further diagnostic and therapeutic interventions.

Germ Tube Test

The germ tube test helps differentiate between *Candida albicans* and other *Candida* species. Here's a general outline of the procedure:

Materials Required:

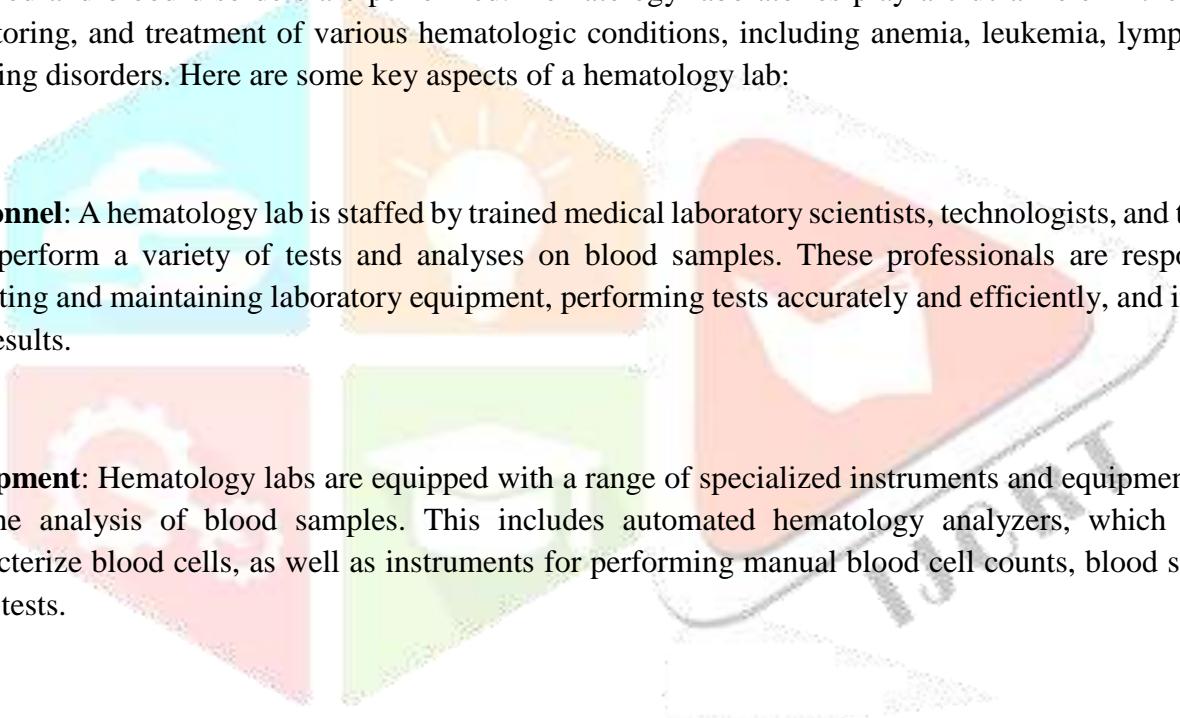
- Candida culture
- Sterile distilled water
- Sterile inoculating loop or needle
- Microscope slides
- Incubator set to 37°C

Procedure:

1. Preparation of Candida suspension: Using a sterile inoculating loop or needle, transfer a small amount of Candida culture from a fresh agar plate into a test tube containing sterile distilled water. Gently emulsify the culture to create a suspension.
2. Incubation: Incubate the Candida suspension in the test tube at 37°C for approximately 2-3 hours. This allows the yeast cells to grow and produce germ tubes.
3. Preparation of microscope slides: Prepare microscope slides by placing a small drop of the Candida suspension onto each slide.
4. Microscopic examination: Examine the Candida suspension under a microscope using a high-power objective (40x or higher). Look for the presence of germ tubes, which are elongated outgrowths from the yeast cells. Germ tubes are typically thin, elongated structures that protrude from the yeast cells.
5. Identification: If germ tubes are observed, the Candida species is likely *Candida albicans*. Other Candida species typically do not produce germ tubes. However, it's important to confirm the identification using additional tests or methods, as some non-albicans Candida species may rarely produce germ tubes.
6. Reporting: Record the results of the germ tube test, including whether germ tubes were observed and any relevant observations.

Notes:

- It's essential to use fresh Candida cultures for the germ tube test, as older cultures may not produce reliable results.
- Incubation at 37°C is crucial for optimal germ tube formation.
- The germ tube test is a presumptive identification method and should be used in conjunction with other tests, such as biochemical assays or molecular methods, for accurate species identification.


PATHOLOGY

Pathology is the branch of medical science that deals with the study of diseases, their causes, mechanisms, and effects on the structure and function of the body. Pathologists are medical professionals who specialize in the diagnosis of diseases through the examination of tissues, organs, bodily fluids, and other specimens obtained from patients.

Pathology plays a crucial role in healthcare by providing insights into the nature of diseases, guiding treatment decisions, and monitoring the progression of illnesses. There are several sub-disciplines within pathology, each focusing on different aspects of disease diagnosis and management:

Hematology Laboratory

A hematology laboratory is a specialized facility within a healthcare institution where diagnostic tests related to blood and blood disorders are performed. Hematology laboratories play a crucial role in the diagnosis, monitoring, and treatment of various hematologic conditions, including anemia, leukemia, lymphoma, and bleeding disorders. Here are some key aspects of a hematology lab:

Personnel: A hematology lab is staffed by trained medical laboratory scientists, technologists, and technicians who perform a variety of tests and analyses on blood samples. These professionals are responsible for operating and maintaining laboratory equipment, performing tests accurately and efficiently, and interpreting test results.

Equipment: Hematology labs are equipped with a range of specialized instruments and equipment designed for the analysis of blood samples. This includes automated hematology analyzers, which count and characterize blood cells, as well as instruments for performing manual blood cell counts, blood smears, and other tests.

Tests and Procedures: Hematology labs perform a wide range of tests and procedures to evaluate the composition, function, and morphology of blood cells. Common tests include CBC as well as tests to assess hemoglobin levels, hematocrit, white blood cell differential, platelet count, and coagulation parameters.

List of Tests performed in the Hematology Laboratory :

1.	CBC
2.	BSR
3.	DLC/TLC
4.	Reticulocyte Count
5.	GBP
6.	HBa1C
7.	HPLC/HP Electrophoresis
8.	Bleeding Time and Clotting Time
9.	PT
10.	APTT

11.	D-dimer
12.	FDP
13.	TT

Table 7

Blood Smear Examination

Blood smear examination is an essential component of hematologic analysis, involving the preparation and microscopic examination of a thin layer of blood cells on a glass slide. This allows for the assessment of cell morphology, identification of abnormal cells, and evaluation of red blood cell size, shape, and distribution.

Procedure

- **Gather Materials:** Collect all the necessary materials for smear preparation, including clean glass microscope slides, labeled with patient identifiers if applicable, and any required fixatives or stains.
- **Preparation of Specimen:** If the specimen is not already in a suitable form for smearing, prepare it according to the specific requirements of the test or procedure. For example, blood smears may involve obtaining a small drop of blood from a fingerstick or venipuncture, while tissue samples may need to be thinly sliced or crushed.
- **Spread the Specimen:** Place a small amount of the specimen onto the center of a clean glass slide using a sterile applicator, such as a loop, swab, or pipette. Use gentle and consistent pressure to spread the specimen across the surface of the slide, creating a thin, even layer of cells.
- **Air-Drying or Fixation:** Depending on the type of specimen and the intended analysis, the smear may need to be air-dried or fixed before further processing. Air-drying involves allowing the smear to dry naturally at room temperature, while fixation involves treating the smear with a chemical fixative to preserve cellular structures and prevent degradation.
- **Staining (Optional):** In many cases, smears are stained to enhance the contrast and visibility of cellular structures under the microscope. Common stains used in smear preparation include Wright's stain, Giemsa stain, Gram stain, and Papanicolaou stain (Pap stain), among others. Follow the specific staining protocol recommended for the type of specimen and the intended analysis.
- **Cover Slip :** After staining, the smear may be covered with a glass cover slip to protect it and prevent distortion or damage during microscopy. Apply a small drop of mounting medium or immersion oil to the center of the smear before placing the cover slip to minimize air bubbles and improve optical clarity.
- **Microscopic Examination:** Once the smear is prepared and stained (if applicable), it is ready for microscopic examination. Place the slide on the stage of a light microscope and observe the specimen under various magnifications to identify and analyze cellular structures, microorganisms, or other relevant features.
- **Documentation and Reporting:** Record your observations, interpretations, and any relevant findings from the microscopic examination. Prepare a report or communicate the results to the appropriate healthcare provider or laboratory personnel as required.
- **Cleanup:** After use, clean and disinfect all equipment and work surfaces according to laboratory protocols to prevent contamination and ensure safety.

Smear preparation is a fundamental technique in laboratory medicine and plays a vital role in the diagnosis and management of various diseases and conditions. Proper technique and attention to detail are essential to ensure accurate and reliable results.

Interpretation and Reporting: After performing tests, hematology laboratory professionals interpret the results and generate reports that provide clinicians with valuable information for diagnosing and managing hematologic conditions. This may involve identifying abnormalities, assessing disease severity, and monitoring treatment response over time.

Clinical Pathology Laboratory

Clinical pathology is a branch of pathology that focuses on the laboratory analysis of bodily fluids and tissues to aid in the diagnosis, prognosis, and treatment of diseases. It encompasses a wide range of laboratory tests and procedures aimed at evaluating the biochemical, hematologic, immunologic, microbiologic, and molecular characteristics of patient samples.

Tests performed in the Clinical Pathology Laboratory:

1.	UPT- Urine Pregnancy Test
2.	Urine Analysis
3.	Semen Analysis

Table 8

Here are some key aspects of clinical pathology:

Clinical Chemistry: Clinical chemists analyze the chemical composition of bodily fluids such as blood, serum, plasma, urine, and cerebrospinal fluid to assess organ function, diagnose diseases, monitor treatment efficacy, and detect abnormalities in metabolism, electrolyte balance, and hormone levels. Common tests include glucose, cholesterol, liver enzymes (ALT, AST), kidney function tests (creatinine, BUN), electrolytes (sodium, potassium), and cardiac markers (troponin, BNP).

Hematology: Hematologists focus on the study of blood and blood disorders. They perform tests to find blood cell morphology. Hematologic tests aid in the diagnosis of anemia, leukemia, lymphoma, bleeding disorders, and other hematologic conditions.

Microbiology: Clinical microbiologists identify and characterize microorganisms (bacteria, viruses, fungi, parasites) present in clinical specimens such as blood, urine, sputum, and swabs. They perform culture, sensitivity testing, and molecular assays to diagnose infectious diseases, determine antibiotic susceptibility, and monitor antimicrobial resistance patterns.

Immunology and Serology: Immunologists study the immune system's response to pathogens and other foreign substances. They perform tests to detect antibodies, antigens, and immune complexes in patient samples to diagnose infectious diseases, autoimmune disorders, allergies, and immunodeficiencies. Serologic tests include ELISA, Western blot, immunofluorescence, and rapid diagnostic tests.

Transfusion Medicine: Transfusion medicine specialists oversee the collection, processing, storage, and transfusion of blood and blood products. They perform compatibility testing (e.g., ABO and Rh typing, crossmatching) to ensure safe and effective transfusions and manage adverse reactions to blood transfusions.

Molecular Pathology: Molecular pathologists use molecular and genetic techniques to diagnose diseases at the molecular level, assess prognosis, and guide targeted therapies. They analyze DNA, RNA, proteins, and other molecular markers to identify genetic mutations, infectious agents, and other biomarkers associated with diseases such as cancer, genetic disorders, and infectious diseases.

Urine Analysis

Urine analysis, also known as urinalysis, is a common diagnostic test performed on urine of Patients in clinical laboratories to assess its chemical and physical properties. This gives us details of any abnormalities if present and help in diagnosis of diseases. Here's an overview of the components and methods involved in urine analysis:

Components of Urine Analysis:

Physical Examination:

- Colour: Pale yellow to amber in range.
- Appearance: Clear urine is the standard. Cells, proteins, or other particle materials may be detected by cloudiness or turbidity.
- Odour: The smell of normal urine is distinctive and subtly aromatic. Unusual or foul smells could be signs of a metabolic problem or illness.

Chemical Examination:

- pH: The normal pH range for urine is between 5 and 6 (acid) and 7 and 8 (slightly alkaline). pH levels that are abnormal can be a sign of urinary tract infections or metabolic problems.
- Protein: Looks for protein in the urine, which could be a sign of illness or damage to the kidneys.
- Glucose: Indicates whether glucose is present in the urine, which may be a sign of diabetes or another metabolic condition.
- Ketones: This test looks for the presence of ketones in the urine, which could be a sign of malnutrition, diabetic ketoacidosis, or other metabolic problems.
- Bilirubin: Indicates whether bilirubin is present in the urine, which could be a sign of bile duct blockage or liver illness.
- Blood: Identifies blood in the urine, which may be a sign of kidney stones, urinary tract infections, or other diseases.
- Nitrites: Indicates the presence of urinary tract bacteria by converting nitrates to nitrites.

Microscopic Examination:

- Red blood cells (RBCs)
- White blood cells (WBCs)
- Epithelial cells
- Casts (protein or cellular aggregates)
- Crystals (e.g., calcium oxalate, uric acid)
- Bacteria, yeast, or other microorganisms

Methods of Urine Analysis:

1. Dipstick Test: A rapid, semi-quantitative method for assessing urine chemistry using a plastic strip (dipstick) impregnated with chemical reagents. The dipstick is dipped into a urine sample, and color changes on the strip indicate the presence or absence of specific analytes.
2. Microscopic Examination: A urine sediment is prepared by centrifuging a urine sample to concentrate cells, casts, crystals, and other particulate matter. The sediment is then examined under a microscope to identify and quantify cellular elements and other structures.
3. Culture and Sensitivity: For suspected urinary tract infections, urine samples may be cultured to isolate and identify pathogenic bacteria or fungi. Sensitivity testing is performed to determine the appropriate antimicrobial therapy.

Instrument used for Urine analysis-

FUS-1000 Urinalysis Hybrid - FUS1000 is a hybrid urinalysis system with complete automation. This urine analyzer combines Gold Standard image recognition with laminar flow cytometry and LED reflection technology. For laboratories with limited space, this compact device with fully automated urine strip and urine sediment analysis is perfect. For the majority of patients, automated urinalysis provides a quick and easy screening test that eliminates the need for unneeded cultures. Urinary tract infections can be precisely ruled out with a urine dipstick and microscopy.

Cytology Laboratory

A cytology laboratory is a specialized facility within a healthcare institution where cytologic examinations are performed. Cytology deals with the examination of single cells usually to identify cancers and precancerous conditions.

List of Tests performed in the Cytology Laboratory:-

1.	PAP
2.	FNAC
3.	Respiratory Cytology
4.	Gynecologic Cytology
5.	Breast, Urinary , Thyroid, Lymph Node, Eye, Ear Cytology

Table 9

Specimen Collection and Processing:

Cytology specimens are collected from various body sites using minimally invasive techniques, such as fine needle aspiration (FNA), brushings, scrapings, washings, and exfoliative methods (e.g., Pap smears). Once collected, specimens are processed in the laboratory to create thin, evenly distributed layers of cells on glass slides for microscopic examination.

Microscopic Examination :

Cytotechnologists examine cellular specimens under a microscope to identify normal and abnormal cells, cellular morphology, and any features indicative of disease. Abnormalities may include changes in cell size, shape, color, nuclear morphology, and the presence of cellular atypia or malignancy. Microscopic examination may be aided by staining techniques, such as the Papanicolaou (Pap) stain, Giemsa stain, or immunocytochemical stains, to enhance cellular visibility and highlight specific structures or markers.

Diagnosis and Reporting:

Based on the microscopic findings, cytotechnologists provide preliminary interpretations of cytologic specimens, flagging any abnormalities or areas of concern for further review by pathologists. Pathologists review the slides, confirm the cytologic findings, and issue final diagnoses. Diagnostic reports are generated and communicated to referring physicians, providing essential information for patient management, treatment planning, and follow-up.

Types of Cytologic Examinations:

Cytology laboratories perform a wide range of cytologic examinations, including:

- Pap smears for cervical cancer screening and detection of cervical precancerous lesions.
- Fine needle aspiration (FNA) cytology for the diagnosis of tumors and other lesions in various body sites, including the thyroid, breast, lymph nodes, and organs.

- Body fluid cytology (e.g., pleural fluid, ascitic fluid, cerebrospinal fluid) for the diagnosis of inflammatory, infectious, and neoplastic conditions.
- Brushings, scrapings, and washings from mucosal surfaces (e.g., respiratory tract, gastrointestinal tract) for the detection of precancerous and cancerous lesions.

Reference

- Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. *New Microbes New Infect.* 2019 Nov 30;34:100622. doi: 10.1016/j_nmni.2019.100622. PMID: 31956419; PMCID: PMC6961714.
- Emery SL, Erdman DD, Bowen MD, Newton BR, Winchell JM, Meyer RF, Tong S, Cook BT, Holloway BP, McCaustland KA, Rota PA, Bankamp B, Lowe LE, Ksiazek TG, Bellini WJ, Anderson LJ. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. *Emerg Infect Dis.* 2004 Feb;10(2):311-6. doi: 10.3201/eid1002.030759. PMID: 15030703; PMCID: PMC3322901.
- Kasempimolporn S, Thaveekarn W, Kerdpanich P, Skulprichetrat U, Saekhow O, Boonchang S, Bhanthong T, Sitprija V. Performance of a rapid strip test for the serologic diagnosis of latent tuberculosis in children. *J Clin Diagn Res.* 2015 Jan;9(1):DC11-4. doi: 10.7860/JCDR/2015/10989.5403. Epub 2015 Jan 1. PMID: 25737986; PMCID: PMC4347077.
- Deshpande NM, Gite S, Aluvalu R. A review of microscopic analysis of blood cells for disease detection with AI perspective. *PeerJ Comput Sci.* 2021 Apr 21;7:e460. doi: 10.7717/peerj-cs.460. PMID: 33981834; PMCID: PMC8080427.
- <https://www.sciencedirect.com/science/article/abs/pii/B9780123745132000026>
- <https://www.acs.org/careers/chemical-sciences/areas/biochemistry.html#:~:text=Biochemistry%20explores%20chemical%20processes%20related,ands%20ways%20to%20control%20them.>
- <https://www.britannica.com/science/biochemistry/Methods-in-biochemistry>
- https://www.orthoclinicaldiagnostics.com/assets/pdf/EMEA/Brochure_CL_V5600_EMEA_PR-06133.pdf
- <https://enviromicro-journals.onlinelibrary.wiley.com/doi/full/10.1111/jam.14704>
- <https://tecil.com/en/producto/fus1000-3/>