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 Abstract:  According to Enestrom and Kakeya theorem ``all the zeros of a polynomial  𝑓(𝑧) = ∑ 𝑘𝑖𝑧
𝑖𝑛

𝑖=0   

with real coefficient lie in |𝑧| ≤ 1  if  0 ≤ 𝑘0 ≤ 𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑛−1 ≤ 𝑘𝑛” see [5, 11]. This article provides 

a region for the zeros of polar derivative of f (z) which does not lie in the region must be simple. By 

imposing some conditions on hypothesis in different ways. 
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1. INTRODUCTION 

 
Let 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + (𝛼 − 𝑧)𝑓′(𝑧)  denote the polar derivative of a polynomial f(z) of degree n with 

respect to real number 𝛼. Regarding the distribution of zeros of f(z), Enestrom and Kakeya [5, 11],  

given the following result. 

Theorem 1.1. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial with real coefficients such that for some   

0 ≤ 𝑘0 ≤ 𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑛−1 ≤ 𝑘𝑛. Then all zeros of f (z) lie in   |𝑧| ≤ 1. 

Regarding the multiplicity of zeros of f(z), Aziz and Mohammad in [1] proved the following result Theorem 

1.2. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial with real coefficients such that for some  0 ≤ 𝑘0 ≤

𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑛−1 ≤ 𝑘𝑛. Then all zeros of f(z) of modulus greater than or equal  to  
𝑛

𝑛+1
  are simple. 

     Gulzar,  Zargar, Akhter in [9] are extended the above results to the polar derivatives, in [2, 3, 4, 6, 10] 

there exist some generalizations and extensions of Enestrom Kakeya theorems, in this article also f(z) is 

the polynomial of  degree n with real coefficients and 𝑏𝑡 denotes the coefficient of differentiation of polar 

derivative (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 and 𝑐𝑡  denotes (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 

𝑡 = 2,3,4, … , 𝑛 
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2. MAIN RESULTS 

Theorem 2.1.  Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η ≥ 0  such that for some 

𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑠𝑏𝑚 ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2 − η. 
Then all zeros of 𝐷𝛼𝑓(𝑧) which does not lie in  

 

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η

|𝑏𝑛|
 

    are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.1. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧
𝑖𝑛

𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number,𝑠 ≥ 1, η ≥ 0  such that 

for some 

0 < 𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑠𝑏𝑚 ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2 − η > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.2. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, such that for 

some 

𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑏𝑚 ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑏𝑛 + 2|𝑏𝑚|−𝑏𝑚 + |𝑏2| − 𝑏2

|𝑏𝑛|
 

 are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.3. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, such that for 

some 

0 < 𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑏𝑚 ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑏𝑛 + 𝑏𝑚

|𝑏𝑛|
 

 are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.4. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number 

,𝑠 ≥ 1, η ≥ 0  such that for some 

𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑠𝑐𝑚 ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2 − η. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑐𝑛 + 2𝑠(𝑐𝑚 + |𝑐𝑚|) − 2𝑐𝑚 + |𝑐2| − 𝑐2 + 2η

|𝑐𝑛|
 

     are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.5. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number 

,𝑠 ≥ 1, η ≥ 0  such that for some 

0 < 𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑠𝑐𝑚 ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2 − η > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑐𝑛 + 2|𝑐𝑚|−𝑐𝑚 + |𝑐2| − 𝑐2

|𝑐𝑛|
 

      are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.6. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η ≥ 0  such that for some 

𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑐𝑚 ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑐𝑛 + 2|𝑐𝑚|−𝑐𝑚 + |𝑐2| − 𝑐2

|𝑐𝑛|
 

   are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 
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𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.7. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η ≥ 0  such that for some 

0 < 𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑐𝑚 ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
−𝑐𝑛 + 𝑐𝑚

|𝑐𝑛|
 

   are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

 

Remark 2.1.  

(1) Theorem 2.1  reduces to Corollary 2.1 if 𝑏𝑗 ≥ 0  

(2) Theorem 2.1  reduces to Corollary 2.2 if 𝑠 = 1, η = 0 

(3) Theorem 2.1  reduces to Corollary 2.3 if 𝑏𝑗 ≥ 0 and 𝑠 = 1, η = 0 

(4) Theorem 2.1  reduces to Corollary 2.4 if   𝛼 = 0 

(5) Theorem 2.1  reduces to Corollary 2.5 if 𝑐𝑗 ≥ 0 and    𝛼 = 0 

(6) Theorem 2.1  reduces to Corollary 2.6 if    𝛼 = 0 and 𝑠 = 1, η = 0 

(7) Theorem 2.1  reduces to Corollary 2.7 if   𝑠 = 1, η = 0 , 𝑐𝑗 ≥ 0 and    𝛼 = 0 

Theorem 2.2.  Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

0 < 𝑟 ≤ 1, η ≥ 0  Such that for some 

𝑟𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑏𝑚 + η ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.8. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

0 < 𝑟 ≤ 1, η ≥ 0  Such that for some 

0 < 𝑟𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑏𝑚 + η ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
(1 − 2𝑟)𝑏𝑛 + 2𝑏𝑚 + 4η

|𝑏𝑛|
 

 are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.9. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

Such that for some 

𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑏𝑚 ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
2𝑏𝑚 + |𝑏2| − 𝑏𝑛 − 𝑏2

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.10. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

Such that for some 

0 < 𝑏𝑛 ≤ 𝑏𝑛−1 ≤ ⋯ ≤ 𝑏𝑚+1 ≤ 𝑏𝑚 ≥ 𝑏𝑚−1 ≥ ⋯ ≥  𝑏3 ≥  𝑏2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
2𝑏𝑚 − 𝑏𝑛

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.11. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

0 < 𝑟 ≤ 1, η ≥ 0  Such that for some 

𝑟𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑐𝑚 + η ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
|𝑐𝑛| + 2𝑐𝑚 + |𝑐2| − 𝑟(𝑐𝑛 + |𝑐𝑛|) − 𝑐2 + 4η

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 
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𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.12. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

0 < 𝑟 ≤ 1, η ≥ 0  Such that for some 

0 < 𝑟𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑐𝑚 + η ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
(1 − 2𝑟)𝑐𝑛 + 2𝑐𝑚 + 4η

|𝑐𝑛|
 

 are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.13. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

Such that for some 

𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑐𝑚 ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
2𝑐𝑚 + |𝑐2| − 𝑐𝑛 − 𝑐2

|𝑐𝑛|
 

are simple.  Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.14. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧
𝑖𝑛

𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

Such that for some 

0 < 𝑐𝑛 ≤ 𝑐𝑛−1 ≤ ⋯ ≤ 𝑐𝑚+1 ≤ 𝑐𝑚 ≥ 𝑐𝑚−1 ≥ ⋯ ≥  𝑐3 ≥  𝑐2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
2𝑐𝑚 − 𝑐𝑛

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Remark 2.2.  

(1) Theorem 2.2  reduces to Corollary 2.8 if 𝑏𝑗 ≥ 0  

(2) Theorem 2.2  reduces to Corollary 2.9 if 𝑟 = 1, η = 0 

(3) Theorem 2.2  reduces to Corollary 2.10 if 𝑏𝑗 ≥ 0 and 𝑟 = 1, η = 0 

(4) Theorem 2.2  reduces to Corollary 2.11 if   𝛼 = 0 

(5) Theorem 2.2  reduces to Corollary 2.12 if 𝑐𝑗 ≥ 0 and    𝛼 = 0 

(6) Theorem 2.2  reduces to Corollary 2.13 if    𝛼 = 0 and 𝑟 = 1, η = 0 

(7) Theorem 2.2  reduces to Corollary 2.14 if   𝑟 = 1, η = 0 , 𝑐𝑗 ≥ 0 and    𝛼 = 0 

Theorem 2.3.  Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑟 ≥ 1,0 < η ≤ 1  Such that for some 

𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑟𝑏𝑚 ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2 + η. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.15. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑟 ≥ 1,0 < η ≤ 1  Such that for some 

0 < 𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑟𝑏𝑚 ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2 + η > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑏𝑛 + 2(1 − 2𝑟)𝑏𝑚 + 2𝑏2 + 2η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.16. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

  Such that for some 

𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑏𝑚 ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑏𝑛 − 2𝑏𝑚 + |𝑏2| + 𝑏2

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.17. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree e polynomial, let 𝛼 be real number, 
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  Such that for some 

0 < 𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑏𝑚 ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑏𝑛 − 2𝑏𝑚 + 2𝑏2

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.18. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑟 ≥ 1,0 < η ≤ 1  Such that for some 

𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑟𝑐𝑚 ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2 + η. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑐𝑛 + 2|𝑐𝑚| − 2𝑟(𝑐𝑚 + |𝑐𝑚|) + |𝑐2| + 𝑐2 + 2η

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.19. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑟 ≥ 1,0 < η ≤ 1  Such that for some 

0 < 𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑟𝑐𝑚 ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2 + η > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑐𝑛 + 2(1 − 2𝑟)𝑐𝑚 + 2𝑐2 + 2η

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.20. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

  Such that for some 

𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑐𝑚 ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑐𝑛 − 2𝑐𝑚 + |𝑐2| + 𝑐2

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.21. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

  Such that for some 

0 < 𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑐𝑚 ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑐𝑛 − 2𝑐𝑚 + 2𝑐2

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Remark 2.3.  

(1) Theorem 2.3  reduces to Corollary 2.15 if 𝑏𝑗 ≥ 0  

(2) Theorem 2.3  reduces to Corollary 2.16 if 𝑟 = 1, η = 0 

(3) Theorem 2.3  reduces to Corollary 2.17 if 𝑏𝑗 ≥ 0 and 𝑟 = 1, η = 0 

(4) Theorem 2.3  reduces to Corollary 2.18 if   𝛼 = 0 

(5) Theorem 2.3  reduces to Corollary 2.19 if 𝑐𝑗 ≥ 0 and    𝛼 = 0 

(6) Theorem 2.3  reduces to Corollary 2.20 if    𝛼 = 0 and 𝑟 = 1, η = 0 

(7) Theorem 2.3  reduces to Corollary 2.21 if   𝑟 = 1, η = 0 , 𝑐𝑗 ≥ 0 and    𝛼 = 0 

Theorem 2.3.  Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

𝑠𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑏𝑚 − η ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.22. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 
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0 < 𝑠𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑏𝑚 − η ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
(2𝑠 − 1)𝑏𝑛 − 2𝑏𝑚 + 2𝑏2 + 4η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.23. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑏𝑚 ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑏𝑛 − 2𝑏𝑚 + |𝑏2| + 𝑏2

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.24. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

0 < 𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏𝑚+1 ≥ 𝑏𝑚 ≤ 𝑏𝑚−1 ≤ ⋯ ≤  𝑏3 ≤  𝑏2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑏𝑛 − 2𝑏𝑚 + 2𝑏2

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.25. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

𝑠𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑐𝑚 − η ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑠(𝑐𝑛 + |𝑐𝑛|)−|𝑐𝑛| − 2𝑐𝑚 + |𝑐2| + 𝑐2 + 4η

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.26. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

0 < 𝑠𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑐𝑚 − η ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
(2𝑠 − 1)𝑐𝑛 − 2𝑐𝑚 + 2𝑐2 + 4η

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.27. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑐𝑚 ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑐𝑛 − 2𝑐𝑚 + |𝑐2| + 𝑐2

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 2.28. Let 𝑓(𝑧) = ∑ 𝑘𝑖𝑧𝑖𝑛
𝑖=0  be the 𝑛𝑡ℎ  degree polynomial, let 𝛼 be real number, 

𝑠 ≥ 1, η > 1  Such that for some 

0 < 𝑐𝑛 ≥ 𝑐𝑛−1 ≥ ⋯ ≥ 𝑐𝑚+1 ≥ 𝑐𝑚 ≤ 𝑐𝑚−1 ≤ ⋯ ≤  𝑐3 ≤  𝑐2 > 0. 
Then all zeros of 𝐷𝛼𝑓(𝑧)  which does not lie in  

|𝑧| ≤
𝑐𝑛 − 2𝑐𝑚 + 2𝑐2

|𝑐𝑛|
 

are simple. Where 𝑐𝑡 = (𝑡 − 1)[(𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 
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Remark 2.1.  

(1) Theorem 2.4  reduces to Corollary 2.22 if 𝑏𝑗 ≥ 0  

(2) Theorem 2.4  reduces to Corollary 2.23 if 𝑠 = 1, η = 0 

(3) Theorem 2.4  reduces to Corollary 2.24 if 𝑏𝑗 ≥ 0 and 𝑠 = 1, η = 0 

(4) Theorem 2.4  reduces to Corollary 2.25 if   𝛼 = 0 

(5) Theorem 2.4  reduces to Corollary 2.26 if 𝑐𝑗 ≥ 0 and    𝛼 = 0 

(6) Theorem 2.4  reduces to Corollary 2.27 if    𝛼 = 0 and 𝑠 = 1, η = 0 

(7) Theorem 2.4  reduces to Corollary 2.28 if   𝑠 = 1, η = 0 , 𝑐𝑗 ≥ 0 and    𝛼 = 0 

 

3.  Proofs of the Theorems 

 

 

Proof of the Theorem 2.1. 

Let  𝑓(z) = 𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛    be the 𝑛𝑡ℎ  degree polynomial with real coefficients. By 
definition of polar derivative, we have 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + (𝛼 − 𝑧)𝑓′(𝑧) 
Therefore 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + 𝛼𝑓′(𝑧) − 𝑧𝑓′(𝑧) 

𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′

− 𝑧(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′ 
𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) − 𝑧(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) 

𝐷𝛼𝑓(𝑧) = [𝑛𝛼𝑘𝑛 + (𝑛 − (𝑛 − 1))𝑘𝑛−1]𝑧𝑛−1 + [(𝑛 − 1)𝛼𝑘𝑛−1 + (𝑛 − (𝑛 − 2))𝑘𝑛−2]𝑧𝑛−2 + ⋯ + [2𝛼𝑘2 + (𝑛 − 1)𝑘1]𝑧

+ [𝛼𝑘1 + 𝑛𝑘0] 

𝐷′
𝛼𝑓(𝑧) = 𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2 

Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Now consider  g(z) =  ( 1 − z )𝐷′
𝛼𝑓(𝑧), so that 

g(z) =  ( 1 − z )(𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2)  

g(z) = −𝑏𝑛𝑧𝑛−1 + (𝑏
𝑛

− 𝑏𝑛−1)𝑧𝑛−2 + (𝑏
𝑛−1

− 𝑏𝑛−2)𝑧𝑛−3 + (𝑏
𝑛−2

− 𝑏𝑛−3)𝑧𝑛−4 + ⋯ + (𝑏
𝑚+1

− 𝑏𝑚)𝑧𝑚−1 + (𝑏
𝑚

− 𝑏𝑚−1)𝑧𝑚−2 + ⋯ + (𝑏
4

− 𝑏3)𝑧2 + (𝑏
3

− 𝑏2)𝑧 + 𝑏2 

Then  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑏𝑛−1| +

|𝑏𝑛−1−𝑏𝑛−2|

|𝑧|
+

|𝑏𝑛−2−𝑏𝑛−3|

|𝑧|2 + ⋯ +
|𝑏3−𝑏2|

|𝑧|𝑛−3 +
|𝑏2|

|𝑧|𝑛−2 }] 

If  |𝑧| > 1 then  
1

|𝑧|
< 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2  [|𝑧|

−
1

|𝑏𝑛|
 {|𝑏𝑛 − 𝑏𝑛−1| + |𝑏𝑛−1 − 𝑏𝑛−2|+|𝑏𝑛−2 − 𝑏𝑛−3| + ⋯ + |𝑏𝑚+2 − 𝑏𝑚+1|+|𝑏𝑚+1 − 𝑠𝑏𝑚|

+ |𝑠𝑏𝑚 + 𝑏𝑚|+|𝑠𝑏𝑚 − 𝑏𝑚−1| + ⋯ + |𝑏3 − (𝑏2 − η)| + |η| + |𝑏2| }] 

≥ |𝑏𝑛||𝑧|𝑛−2  [|𝑧|

−
1

|𝑏𝑛|
{𝑏𝑛−1 − 𝑏𝑛 + 𝑏𝑛−2 − 𝑏𝑛−1 + ⋯ + 𝑏𝑚+1 − 𝑏𝑚+2 + 𝑠𝑏𝑚 − 𝑏𝑚+1 + (𝑠 − 1)|𝑏𝑚| + (𝑠

− 1)|𝑏𝑚| + 𝑠𝑏𝑚 − 𝑏𝑚−1 … + 𝑏3 − (𝑏2 − η) + η + |𝑏2| }] 

≥ |𝑏𝑛||𝑧|𝑛−2  [|𝑧| −
1

|𝑏𝑛|
{−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠|𝑏𝑚| − 2𝑠𝑏𝑚 − 𝑏2 + η + η + |𝑏2| }] 

≥ |𝑏𝑛||𝑧|𝑛−2  [|𝑧| −
1

|𝑏𝑛|
{−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η}]. 

 

Hence g (z) > 0 provided |𝑧| >
1

|𝑏𝑛|
{−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η} 

This shows that all zeros of g (z) whose modulus is greater than 1 are lie in 

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η

|𝑏𝑛|
. 
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Since zeros of g(z) whose modulus is less than or equal to 1 are already lie in 

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η

|𝑏𝑛|
 

it follows that all zeros of g(z) lie in 

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η

|𝑏𝑛|
. 

Since all zeros of g(z) are also the zeros of  𝐷′
𝛼𝑓(𝑧). Therefore all zeros of 𝐷′

𝛼𝑓(𝑧) lie in 

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η

|𝑏𝑛|
. 

In other words all zeros of 𝐷𝛼𝑓(𝑧) which does not lie in 

|𝑧| ≤
−𝑏𝑛 + 𝑠𝑏𝑚 + 2𝑠(|𝑏𝑚| − 𝑏𝑚) − 𝑏2 + |𝑏2| + 2η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Proof of the Theorem 2.2. 

Let  𝑓(z) = 𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛    be the 𝑛𝑡ℎ  degree polynomial with real coefficients. By 
definition of polar derivative, we have 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + (𝛼 − 𝑧)𝑓′(𝑧) 
Therefore 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + 𝛼𝑓′(𝑧) − 𝑧𝑓′(𝑧) 

𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′

− 𝑧(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′ 
𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) − 𝑧(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) 

𝐷𝛼𝑓(𝑧) = [𝑛𝛼𝑘𝑛 + (𝑛 − (𝑛 − 1))𝑘𝑛−1]𝑧𝑛−1 + [(𝑛 − 1)𝛼𝑘𝑛−1 + (𝑛 − (𝑛 − 2))𝑘𝑛−2]𝑧𝑛−2 + ⋯ + [2𝛼𝑘2 + (𝑛 − 1)𝑘1]𝑧

+ [𝛼𝑘1 + 𝑛𝑘0] 

𝐷′
𝛼𝑓(𝑧) = 𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2 

Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Now consider  g(z) =  ( 1 − z )𝐷′
𝛼𝑓(𝑧), so that 

g(z) =  ( 1 − z )(𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2)  

g(z) = −𝑏𝑛𝑧𝑛−1 + (𝑏
𝑛

− 𝑏𝑛−1)𝑧𝑛−2 + (𝑏
𝑛−1

− 𝑏𝑛−2)𝑧𝑛−3 + (𝑏
𝑛−2

− 𝑏𝑛−3)𝑧𝑛−4 + ⋯ + (𝑏
𝑚+1

− 𝑏𝑚)𝑧𝑚−1 + (𝑏
𝑚

− 𝑏𝑚−1)𝑧𝑚−2 + ⋯ + (𝑏
4

− 𝑏3)𝑧2 + (𝑏
3

− 𝑏2)𝑧 + 𝑏2 

Then  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑏𝑛−1| +

|𝑏𝑛−1−𝑏𝑛−2|

|𝑧|
+

|𝑏𝑛−2−𝑏𝑛−3|

|𝑧|2 + ⋯ +
|𝑏3−𝑏2|

|𝑧|𝑛−3 +
|𝑏2|

|𝑧|𝑛−2 }] 

If  |𝑧| > 1 then  
1

|𝑧|
< 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑟𝑏𝑛| + |𝑟𝑏𝑛 − 𝑏𝑛−1| + ⋯ + |𝑏𝑚+2 − 𝑏𝑚+1|+|𝑏𝑚+1 − (𝑏𝑚 + η)| + |η| +

|𝑏𝑚 + η − 𝑏𝑚−1| + η … + |𝑏3 − 𝑏2| + |𝑏2| }] 

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η} 

Hence |g(z)| > 0 provided 

 

|𝑧| >
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
 

This shows that all zeros of g (z) whose modulus is greater than 1 are lie in 

|𝑧| ≤
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
 

 

Since zeros of g(z) whose modulus is less than or equal to 1 are already lie in 

|𝑧| ≤
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
 

it follows that all zeros of g(z) lie in 

|𝑧| ≤
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
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Since all zeros of g(z) are also the zeros of  𝐷′
𝛼𝑓(𝑧). Therefore all zeros of 𝐷′

𝛼𝑓(𝑧) lie in 

|𝑧| ≤
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
 

In other words all zeros of 𝐷𝛼𝑓(𝑧) which does not lie in 

 

|𝑧| ≤
|𝑏𝑛| + 2𝑏𝑚 + |𝑏2| − 𝑟(𝑏𝑛 + |𝑏𝑛|) − 𝑏2 + 4η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Proof of the Theorem 2.3. 

Let  𝑓(z) = 𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛    be the 𝑛𝑡ℎ  degree polynomial with real coefficients. By 
definition of polar derivative, we have 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + (𝛼 − 𝑧)𝑓′(𝑧) 
Therefore 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + 𝛼𝑓′(𝑧) − 𝑧𝑓′(𝑧) 

𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′

− 𝑧(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′ 
𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) − 𝑧(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) 

𝐷𝛼𝑓(𝑧) = [𝑛𝛼𝑘𝑛 + (𝑛 − (𝑛 − 1))𝑘𝑛−1]𝑧𝑛−1 + [(𝑛 − 1)𝛼𝑘𝑛−1 + (𝑛 − (𝑛 − 2))𝑘𝑛−2]𝑧𝑛−2 + ⋯ + [2𝛼𝑘2 + (𝑛 − 1)𝑘1]𝑧

+ [𝛼𝑘1 + 𝑛𝑘0] 

𝐷′
𝛼𝑓(𝑧) = 𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2 

Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Now consider  g(z) =  ( 1 − z )𝐷′
𝛼𝑓(𝑧), so that 

g(z) =  ( 1 − z )(𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2)  

g(z) = −𝑏𝑛𝑧𝑛−1 + (𝑏
𝑛

− 𝑏𝑛−1)𝑧𝑛−2 + (𝑏
𝑛−1

− 𝑏𝑛−2)𝑧𝑛−3 + (𝑏
𝑛−2

− 𝑏𝑛−3)𝑧𝑛−4 + ⋯ + (𝑏
𝑚+1

− 𝑏𝑚)𝑧𝑚−1 + (𝑏
𝑚

− 𝑏𝑚−1)𝑧𝑚−2 + ⋯ + (𝑏
4

− 𝑏3)𝑧2 + (𝑏
3

− 𝑏2)𝑧 + 𝑏2 

Then  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑏𝑛−1| +

|𝑏𝑛−1−𝑏𝑛−2|

|𝑧|
+

|𝑏𝑛−2−𝑏𝑛−3|

|𝑧|2 + ⋯ +
|𝑏3−𝑏2|

|𝑧|𝑛−3 +
|𝑏2|

|𝑧|𝑛−2 }] 

If  |𝑧| > 1 then  
1

|𝑧|
< 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑏𝑛| + ⋯ + |𝑏𝑚+2 − 𝑏𝑚+1|+|𝑏𝑚+1 − 𝑟𝑏𝑚| + |𝑟𝑏𝑚 − 𝑏𝑚| + |𝑏𝑚 − 𝑟𝑏𝑚| +

|𝑟𝑏𝑚 − 𝑏𝑚−1| + ⋯ + |𝑏3 − (𝑏2 + η)| + |η| + |𝑏2| }] 

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η}] 

 

Hence |g(z)| > 0 provided 

 

|𝑧| >
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

This shows that all zeros of g (z) whose modulus is greater than 1 are lie in 

|𝑧| ≤
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

 

Since zeros of g(z) whose modulus is less than or equal to 1 are already lie in 

|𝑧| ≤
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

it follows that all zeros of g(z) lie in 

|𝑧| ≤
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

Since all zeros of g(z) are also the zeros of  𝐷′
𝛼𝑓(𝑧). Therefore all zeros of 𝐷′

𝛼𝑓(𝑧) lie in 

|𝑧| ≤
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

In other words all zeros of 𝐷𝛼𝑓(𝑧) which does not lie in 
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|𝑧| ≤
𝑏𝑛 + 2|𝑏𝑚| − 2𝑟(𝑏𝑚 + |𝑏𝑚|) + |𝑏2| + 𝑏2 + 2η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Proof of the Theorem 2.4. 

Let  𝑓(z) = 𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛    be the 𝑛𝑡ℎ  degree polynomial with real coefficients. By 
definition of polar derivative, we have 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + (𝛼 − 𝑧)𝑓′(𝑧) 
Therefore 𝐷𝛼𝑓(𝑧) = 𝑛𝑓(𝑧) + 𝛼𝑓′(𝑧) − 𝑧𝑓′(𝑧) 

𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′

− 𝑧(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛)′ 
𝐷𝛼𝑓(𝑧) = 𝑛(𝑘0 + 𝑘1𝑧 + 𝑘2𝑧2 + ⋯ +  𝑘𝑛𝑧𝑛) + 𝛼(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) − 𝑧(𝑘1 + 2𝑘2𝑧 + ⋯ + 𝑧 𝑘𝑛𝑧𝑛−1) 

𝐷𝛼𝑓(𝑧) = [𝑛𝛼𝑘𝑛 + (𝑛 − (𝑛 − 1))𝑘𝑛−1]𝑧𝑛−1 + [(𝑛 − 1)𝛼𝑘𝑛−1 + (𝑛 − (𝑛 − 2))𝑘𝑛−2]𝑧𝑛−2 + ⋯ + [2𝛼𝑘2 + (𝑛 − 1)𝑘1]𝑧

+ [𝛼𝑘1 + 𝑛𝑘0] 

𝐷′
𝛼𝑓(𝑧) = 𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2 

Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 

Now consider  g(z) =  ( 1 − z )𝐷′
𝛼𝑓(𝑧), so that 

g(z) =  ( 1 − z )(𝑏𝑛𝑧𝑛−2 + 𝑏𝑛−1𝑧𝑛−3 + 𝑏𝑛−2𝑧𝑛−4 + ⋯ + 𝑏4𝑧2 + 𝑏3𝑧 + 𝑏2)  

g(z) = −𝑏𝑛𝑧𝑛−1 + (𝑏
𝑛

− 𝑏𝑛−1)𝑧𝑛−2 + (𝑏
𝑛−1

− 𝑏𝑛−2)𝑧𝑛−3 + (𝑏
𝑛−2

− 𝑏𝑛−3)𝑧𝑛−4 + ⋯ + (𝑏
𝑚+1

− 𝑏𝑚)𝑧𝑚−1 + (𝑏
𝑚

− 𝑏𝑚−1)𝑧𝑚−2 + ⋯ + (𝑏
4

− 𝑏3)𝑧2 + (𝑏
3

− 𝑏2)𝑧 + 𝑏2 

Then  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑏𝑛−1| +

|𝑏𝑛−1−𝑏𝑛−2|

|𝑧|
+

|𝑏𝑛−2−𝑏𝑛−3|

|𝑧|2 + ⋯ +
|𝑏3−𝑏2|

|𝑧|𝑛−3 +
|𝑏2|

|𝑧|𝑛−2 }] 

If  |𝑧| > 1 then  
1

|𝑧|
< 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒  

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{|𝑏𝑛 − 𝑠𝑏𝑛| + |𝑠𝑏𝑛 − 𝑏𝑛−1| + ⋯ + |𝑏𝑚+1 − (𝑏𝑚 − η)|+|η| + |𝑏𝑚 − η −

𝑏𝑚−1| + |η| + ⋯ + |𝑏3 − 𝑏2| + |𝑏2| }] 

|g(z)| ≥ |𝑏𝑛||𝑧|𝑛−2[ |𝑧| −
1

|𝑏𝑛|
{𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η}] 

 

Hence |g(z)| > 0 provided 

 

|𝑧| >
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

This shows that all zeros of g (z) whose modulus is greater than 1 are lie in 

|𝑧| ≤
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

 

Since zeros of g(z) whose modulus is less than or equal to 1 are already lie in 

|𝑧| ≤
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

it follows that all zeros of g(z) lie in 

|𝑧| ≤
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

Since all zeros of g(z) are also the zeros of  𝐷′
𝛼𝑓(𝑧). Therefore all zeros of 𝐷′

𝛼𝑓(𝑧) lie in 

|𝑧| ≤
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

In other words all zeros of 𝐷𝛼𝑓(𝑧) which does not lie in 

 

|𝑧| ≤
𝑠(𝑏𝑛 + |𝑏𝑛|)−|𝑏𝑛| − 2𝑏𝑚 + |𝑏2| + 𝑏2 + 4η

|𝑏𝑛|
 

are simple. Where 𝑏𝑡 = (𝑡 − 1)[𝑡𝛼𝑘𝑡 + (𝑛 − (𝑡 − 1))𝑘𝑡−1]  for 𝑡 = 2,3,4, … , 𝑛 
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