Synthesis Of 2,4-Diaryl-2, 3-Dihydro-1, 5-Benzothiazepines

Dr. Varinder Sehgal **Chemistry Department** SPNKS Govt. College, Dausa

INTRODUCTION

Our work on the synthesis of 1, 5-0benzothiazepines, we report herein the synthesis of six new 2, 3dihydro-1, 5-benzothiazepines¹⁻² having a methoxyl group at various positions in the phenyl ring at position 2 or 4, alone or alongwith other groups.

The required chalk ones (1a=f) were prepared by literature method²⁻⁷ and reacted with 2aminothiophenol in anhyd toluene to obtain 2, 4-diaryl-2, 3-dihydro-1, 5-benzothiazepines (Iia-f) invariably in one-step in satisfactory yields. However, in the reaction of 4-(N, N-dimethylamino)-4'methoxybenzalacetophenone (Ia) with 2-aminothiophenol; IIIa (m.p. 158°, yield 37%) was also obtained besides IIa in a major amount (yield 48%; m.p. 142°). IIIa showed IR absorptions at 3450 (N-H, asym), 3360 (N-H, sym) and 1680 cm-1 (C=0). Absence of absorption in the region 2650-2550 cm⁻¹ indicated the absence of thiol group. It appears that the reaction is initiated by nucleophilic attack of sulphydryl electrons rather than by lone pair of electrons of amino group at β-carbon of the chalkone, and therefore, IIIa was characterised as an intermediate compound. Its dehydrative cyclization in methanol containing gl. acetic acid afforded IIa, identical with the product obtained above in major amount (yield 48%).

Compounds IIb-f were obtained in one-step from the reactions of respective chalkones with 2aminothiophenol without isolation of any other product as intermediate.

The non-equivalence of methylene protons in the seven membered non-planar ring with δHa, 2.68-2.82 and δH_B , 3.32-3.38 with the uniform coupling constant of $J_{AB}=16$ Hz, $J_{AX}=9$ Hz and $J_{BX}=8$ Hz and all the three protons H_A, H_B and H_x appearing as double doubles (table 1) might be due to the presence of a chiral centre in the molecule. IN the mass spectra of IIa, b, c and f the highest ion peak appeared at m/z 388, 390, 391 and 361 respectively corresponding to their molecular weights. IId showed M⁺ peak at m/z 469 followed by $(M^+ + 2)$ peak of almost equal intensity at m/z 471 due to the presence of one bromine atom. He exhibition isotopic cluster of peaks at m/z 473 (M⁺), 475 (M⁺ +2) and 477 (M⁺ +4) due to the presence of one chlorine and one bromine atoms. The characterization data of IIb = f are given in Table -1.

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{2}$$

$$R_{3}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{3}$$

$$R_{5}$$

$$R_{1}$$

$$R_{3}$$

$$R_{5}$$

$$R_{1}$$

$$R_{3}$$

$$R_{5}$$

$$R_{1}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9}$$

$$R_{1}$$

$$R_{9$$

M.ps are uncorrected. IR spectra were taken in KBr pellets on a Perkin-Elmer infracord-577 spectrometer, PMR spectra in CDCI₃ on Perkin-Elmertrometer using TMS as internal standard and mass spectra on a varian Match-7 instrument. TLC was run on silica gel G plates using benzene-ethanolammonia (7:2:1) as irrigant.3-(2-Aminophenylmercapto)-3-(p-N, N-dimethyl-aminophenyl)-p-methoxypropiophenone(IIIa).

A mixure of 2-aminothiophenol (1.25g 0.01 mol) and p-(N, N-dimethylamino)-4'-methoxybenzalacetophenone (Ia, 2.81 g, 0.01 mol) in anhyd. toluene (20ml) was refluxed for 3 hr till the colour changed from light yellow to orange. Removal of toluene under reduced pressure gave a residue which on crystallisation from methanol gave two products, IIa (yield 48%, m.p. 142°) and IIIa. IIIa was obtained in orange crystals, m.p. 158°, yield 1.5g (37%) (Found: C, 71.4; H, 6.0; N, 6.6.C₂₄H₂₆N₂O2s requires C, 70.9; H, 6.4; N, 6.9%); IR: 3450 (N-H, sym), 1680 (C=0): PMR; δ 2.26 (s, 6H - N (CH₃)₂], 4.68 (t, 1H, = CH), 3.34 (q, 2H, -CH₂-), 3.68 (s, 3H, -OCH₃), 4.20 (s, 2H, -NH₂) and 6.40-8.20 (m, 12H, Ar-H).

Found (%) (Calc.)			Mol. formula (M ⁺)	$R_{\rm f}$	Yield (%)	m.p. °C	Compd*	
N	С Н	С				Synch		
7.0 7.2)	4.6	67.6	C ₂₂ H ₁₈ N ₂ O ₃ S (390)	0.69	59	193	IIb	
3.5	5.3 5.4	70.5	C ₂₃ H ₂₁ NO ₃ S (391)	0.72	76	164	IIc	
2.9 3.0)	_	<u>-</u>	C ₂₃ H ₂₀ NO ₃ SBr (471)	0.74	58	175	IId	
2.9 3.0)	3.6 3.6	55.5	C ₂₂ H ₁₇ NO ₂ SClBr (473)	0.70	57	170	IIe	
	5.2 5.3	73.0 (73.1	C ₂₂ H ₁₉ NO ₂ S (361)	0.74	73	162	IIf	

4- Anisyl- 2, 3- dihydro- 2- (p- N, N-dimethylamino-phenyl)-1, 5-benzothiazepine (IIa)

Compound IIIa (2.01 g, 0.005 mol) in dry methanol (10 ml) and gl. acetic acid (0.5 ml) was refluxed for 1 hr and the reaction mixture kept overnight. The orange solid thus obtained was filtered and crystallised from methanol to give orange crystals, m.p. 142°, yield 1.42 g (71%), R_f 0.68 (Found: C, 73.8; H, 6.1: N, 7.1. C₂₄H₂₄N₂OS requires C, 74.2; H, 6.2; N, 7.2%); IR: 3060 (arom C-H), 2900, 2835 (saturated C-H), 1612 (C=N), 1600, 1575 (arom. C=C); PMR: 2.50 [s,6H, -N(CH₃)₂]. 2.68 (dd, J_{AB} = 16 Hz, J_{AX} = 9 Hz, H_A), 3.32 (dd, $J_{AB} = 16$ Hz, $J_{BX} = 8$ Hz, H_B), 3.80 (dd, $J_{AX} = 9$ Hz, $J_{BX} = 8$ Hz, H_X), 3.68 (s, 3H, -OCH₃), 6.6-7.8 (m, 12H, Ar-H).

Refluxing of equimolar quantities of 2-aminothiophenol and respective chalkones (I) in anhyd. toluene as described above for IIIa afforded IIb, c, d, e and f in one step. The characterization data of these products are given in Table 1.

REFERENCES

- Jung D.I, Choi T.W., Kim Y.Y. et al., Synthetic Communications. 2a (1999) no. 11, 1941 1951 1.
- Sivamurugan V., Deepa K., Palanichamy M., Murugesan V., Synthetic Communications. 34 (2004) 2. no. 21, 3833 – 3846
- Nageli H & Tamber J, Helv Chim Acta, 7 (1924) 333; Chem Abstr, 19 (1924) 2005. 3.
- Kaufmann H P, Ber dt chem Ges, 54(B) (1921) 795. 4.
- Bradsher K Charles, J Am chem Soc, 71 (1949) 3570. 5.
- Raiford L C & Stoesser W C, J Am chem Soc, 49 (1927) 1077. 6.

 $J_{AB} = 16 \text{ Hz}, J_{BX} = 8 \text{ Hz}, H_B), 4.85-5.04 (dd, 1H, J_{AX} = 9 \text{ Hz}, J_{BX} = 8 \text{ Hz}, H_X).$

- Raiford L C & Gundy V G, J org Chem, 3 (1938) 265. 7.
- Dhar Durganath, J Indian chem Soc, 37 (1960) 799. 8.