

REQUIREMENTS AND RELIABILITY OF AI IN THE EXCRETORY SYSTEM

Madanpal Singh

ABSTRACT

Users have control over their health and well-being thanks to AI. AI also enhances the ability of healthcare professionals to recognize the recurring patterns and needs of the patients they look after, allowing them to provide better feedback, guidance, and support for preserving health. In this paper we understand how the reliability model works for AI techniques used in excretory problem in medical field. All are important; if AI techniques and equipment are used to cure excretory diseases then reliability model gives the reliability of those particular AI technique in particular excretory diseases.

Keywords: artificial intelligence, machine learning, reliability, medical application, reliability models

INTRODUCTION

By establishing a setting where the impact of unit not available can be computed, **A. Unione et al. (1980)** stressed on the necessity of availability modeling methodology to MSF desalination plant reliability problems. An ad hoc taxonomy of Influencing Factors for surgery was created by **R. Onofrio et al. (2015)** and is intended to be the first step in the implementation of IF-based HRA in the healthcare industry. Using field return data, **M. Altun & S. V. Comert (2016)** suggested a reliable reliability prediction model for high-volume complex electronic goods over the course of their guarantee durations. **F. Basile et al. (2017)** gathered, analyzed, and summarized the information that was accessible in studies on the diagnostic accuracy of osteopathic testing. The question of whether the 3Shape cardinal classical structure may well be used in the area of dentistry concerned with the prevention and correction of irregularities of the teeth investigative examination with accuracy, particularly underneath various herding conditions, was clarified by **Y. Liang et al. in 2018**. Since they were recognized as neglected tropical illnesses in 2010, **C. Mubanga et al. (2019)** have highlighted the growth of quick assays for the diagnosis of FNZH. **S. Liu et al. (2020)** investigated how target amount affects the performance of online medical crowd funding projects and the effects of attention and reliability. **L. J. Catania (2021)** talked about how the advantages are immeasurable and how important they are for treating all other common illnesses and disorders. The further collective infections of human body structures, such as cancer, cardiovascular and the blood vessels that supply the brain problem, a medical disorder, that causes the body to produce an excessive amount of urine, and neural syndromes, are some of the prevalent problems and the applications of AI that are covered in Chapter 7. Finally, the impact of AI on common problems including ageing, exercise, diet, mental health, chronic disease, infectious disease, and injury is examined. Modeling is one of the most crucial elements of decision support systems, according to **S. Etemadi & M. Khashei (2022)**. These systems are widely used to simulate and evaluate under-researched systems in order to make better decisions in the field of medicine. CoMFA and CoMSIA models with perfect cross-validated correlation coefficient values were created using 36 pyridine derivatives, according to the findings of **J. Shi et al. in 2022**. Better understandings for developing new HPPD inhibitors resulted from the molecular skeleton's prediction of the effects associated with each substituent. Two recently developed substances, W1 and W2, were created and then tested for AtHPPD inhibition and bioassay validity.

EVOLUTION OF MACHINE LEARNING IN EXCRETORY SYSTEM

Dairy cows excrete a considerable amount of the dietary nitrogen (N) they consume, which is predominantly in the form of protein, into the environment. This results in soil acidification, biodiversity declines, and terrestrial eutrophication. N-related contaminants, such as ammonia, are connected to lung conditions, lingering inflammation of the mucous membrane in the airways bronchial tubes of the lungs, and early humanity in addition to environmental pollution. In Europe, animal agriculture is responsible for over 75% of the ammonia released into the atmosphere. Additionally, the most expensive component of dairy cows' diets is protein supplements, therefore N excretion results in a financial loss. As a result, minimizing fertilizer N (MN) release from milk production methods is receiving more attention due to economic and environmental challenges. To improve commercial firmness and lessen the ecological effects of dairy husbandry, the dairy production business must be able to precisely predict and mitigate MN excretion. For the estimation of MN flux from animal invention, MLR analysis is one of the most often castoff modeling methodologies. Numerous statistical models have been developed thus far to forecast MN excretion from dairy cows, most of which are constructed on linear regression and MLR. These studies found that higher prediction accuracy for MN was found in equations that included dietary factors such as N intake (NI), dietary forage proportion (FP), and dietary N content (DNC), as well as animal parameters such as live weight (LW), milk yield (MY), and days in milk. However, the four main presumptions of MLR analysis are that the connection between the dependent and independent variables is linear, the mistakes are statistically independent, the errors are homoscedastic, and the error distribution is normal. The fact that these presumptions might not always be true presents a hurdle when using the MLR technique because it could result in biased results and unsatisfactory prediction.

Artificial neural networks (ANN), random forest regression (RFR), and support vector regression (SVR) are good examples of machine learning methods that can be used to analyze the complicated correlations between resource inputs and outputs in the production of cattle, despite the fact that the datasets are noisy and uncertain. The use of machine learning is enormous. A diet high in fruits and vegetables has also been found to be protective against bladder cancer, in addition to the findings that cranberry juice can lower the incidence of bladder cancer. It was found that the ANN model performed better at predicting the nutrient concentration in cow manure than the MLR model did, and that the ANN model performed better at analyzing the relationships than the MLR model did. They didn't perform any better due to the rumen fermentation pattern or the milk fatty acids in dairy. The RFR model fared better than the MLR model at predicting individual survival rates for second lactation in Holstein cows. The SVR approach performs better than neural network models for forecasting the carcass weight and body weight of broiler chicks in terms of accuracy and generalization. Based on these results, it may be preferable to forecast MN in cattle production using reliable models as opposed to MLR. Underweight, productivity, feed consumption, concentrations of nitrogen and fiber in the diet, among other animal and nutritional parameters, are some of the causes of this. Complex relationships between nitrogen excretion rate and food and animal factors, as well as the mutual effects of these components, can be explored and explored using machine learning methods. However, there is no information on how to apply machine learning techniques to the study. This work aims to bridge the knowledge gap about the relationship between MN of dairy cattle and dietary and animal variables. It does this by evaluating the predictive power of several machine learning algorithms with the MLR technique in forecasting nitrogen fertilizer disposal.

CAN ML TAKE THE POSITION OF THE DOCTOR?

AI techniques are employed to make it easier to diagnose various ailments; however they cannot take the place of doctors in the healthcare system. Just as tractors haven't replaced farmers, neither have electric drills replaced carpenters. They use it as a tool to increase their productivity. True, fewer farmers and carpenters exist now than there did 100 years ago since output has increased more quickly than demand. We are only able to eat so much or construct so many homes.

In the distant future, there might be fewer doctors. However, the need for healthcare will continue to rise, therefore I don't anticipate this to happen too quickly. Healthcare's share of the overall GDP is likely to increase. One of the most significant aspects of our life is healthcare, yet we don't always provide it at its best. Imagine a world without mental illness, cancer, strokes, Alzheimer's, genetic disorders, the common cold, the flu, or venereal disease. Think about the value that would add to the world each year—tens of trillions of dollars.

Although it won't take the position of doctors, technology can make them better. In other words, medical advances involving AI do not take the place of human doctors. By accepting specific responsibilities, individuals merely improve upon what they are already capable of making decisions. However, no amount of technology can ever really replace what it means to be a doctor or the vitally important, individually tailored patient-physician relationship.

AI DECISION SUPPORT IS UNDER HUMAN SUPERVISION

Organizations are increasingly turning to AI to boost productivity and efficiency in today's competitive labor market and hybrid working environment. Through the massive volumes of data produced by the many machine learning and data science tools, artificial intelligence has personalized client experiences. Overall, it has had a significant impact on both our personal and professional life. But even with all these technological advances, AI still requires human intervention. While scientists and researchers are developing new techniques for automating daily tasks, artificial intelligence (AI) still requires human oversight to function well.

Driverless operations are required by cutting-edge technologies like flying robots, drones, and self-driving autos. Enterprise AI, however, depends on people for further operational guidance and requires outside assistance to accomplish tasks effectively.

First of all, the notion that AI would employ the majority of the workforce has motivated many academics and scientists to create such robots that will also be operated by people. Process automation will eliminate errors from operations, but it will also make human labor unnecessary. Additionally, there aren't many studies on human-robot collaboration models that can deliver correct outcomes with the same efficiency as to please clients.

The best use of AI involves human monitoring and enhancement. When that occurs, people advance along the skill spectrum and take on more difficult tasks as AI continues to develop, learn, and restrain its potentially negative consequences. Intelligent systems perform better when advanced models like conversational AI and cognitive AI are used in conjunction with real people who have the knowledge, creativity, and empathy.

The three system qualities of reliability, maintainability, and availability (RAM) are very important to artificial intelligence (AI) utilized in excretory systems. They have an overall impact on a system's usability and lifespan. As computer systems become more integrated, medical systems must take into account both hardware and software.

Maintenance models may be advantageous, but they may have drawbacks. The time needed for diagnosis, resource assembly (parts, bodies, tools, and mechanics), repair, inspection, and return is included in the overall time needed to repair an AI operation. Holiday delays might significantly impede the repair procedure. The majority of distributions that are used to represent maintainability have a required minimum time. This is because the minimum time required for these sub processes to finish is frequently non-zero.

A threshold parameter is the minimum time frame in which it is expected that an AI system will be used in the excretory system. Queuing effects, which give non-independent repair times, may further complicate the evaluation of AI maintainability. This dependence makes analytical solutions to issues with excretory maintainability impractical because simulation is often utilized to support the AI system that was deployed.

Reliability

The probability that an artificial intelligence (AI) system will operate as planned under specified circumstances in an excretory system for a predetermined amount of time is known as reliability.

Maintainability

The likelihood that a specific maintenance task for AI may be completed within a certain time frame when maintenance on the excretory system is carried out under specified circumstances with specified resources. There are two types of maintainability: serviceability (the simplicity with which routine inspections and maintenance can be carried out) and reparability (the ease of restoring service after a failure).

Availability

It is described as the likelihood that an excretory component or artificial intelligence system will be functional at a specific moment under a specific set of medical circumstances. Reliability and maintainability are necessary for availability.

Failure

Any situation in which a system or component of an excretory does not work as intended constitutes a failure.

PROBABILITY DISTRIBUTIONS USED IN RELIABILITY ANALYSIS

You can think of reliability as the likelihood that an AI will exist in an excretory system up until time t . The likelihood that an AI diagnosis will fail before or at time t is its complement. If the time until an AI diagnostic fails is defined as a random variable T , then:

$$Re(t) = P(T > t) = 1 - f(t)$$

where $f(t)$ is the likelihood that an AI diagnostic would fail and $Re(t)$ is its reliability. The cumulative distribution function (CDF) of a mathematical probability distribution represents the failure likelihood of AI diagnosis.

RAM CONSIDERATIONS DURING SYSTEMS DEVELOPMENT

When developing an AI diagnostic, RAM is a natural excretory system or medical system attribute to be taken into account.

Understanding User Requirements and Constraints

Information on AI detection requirements, constraints (such as mass, energy consumption, space footprint, and life cycle cost) and requirements that match RAM requirements should be extracted to understand the requirements for disposal problems.

Design for Reliability

System designs can then be developed and evaluated based on disposal system design choices and the need for artificial intelligence equipment. Reliability engineering is currently focused on enhancing AI robustness by utilizing strategies like redundancy, diversity, internal testing, enhanced diagnostics, and modularity to speed up processing.

Production for Reliability

Quality is one of the factors that lead to a number of health problems associated with RAM. The repeatability and regularity of the disposal system is important, as is a comprehensive and clear measure for artificial intelligence of the supply chain. Other factors are related to storage, transportation and design for production.

MONITORING DURING USE AND OPERATION

After an AI is launched, reliability, availability, and other factors are evaluated to determine whether the AI has achieved its goals. If unexpected failures occur, corrections are made and the AI is re-evaluated.

DATA ISSUES

There is no evidence that actual RAM models are successful for disposal systems. A distribution for a model is selected based on data from a particular artificial intelligence system, which is used to fit the parameters of the distribution.

DISCIPLINE MANAGEMENT

In significant programs, RAM specialists often report to the healthcare system organization. Based on operational needs, lifecycle expenses, and warranty cost forecasts, recovery for RAM is decided at the project level. These lead to RAM-derived excretory system requirements and allocations, which the medical system requirements management function authorizes and manages. The RAM function assesses AI diagnosis failures through collaborative meetings like a Failure Review Board, and the testing organization coordinates RAM testing with other medical system testing. Based on an analysis of test results or software discrepancy reports, the medical system organization, or in some cases the acute patient if cost increases are involved, must decide whether to accept the RAM function's recommendations for design or development process improvements.

POST-PRODUCTION MANAGEMENT SYSTEMS

Once deployed, it's crucial to keep an eye on an excretory system's dependability and availability. The producer/owner can analyses the operating environment, identify unexpected failure modes, note fixes, ensure that the design has achieved its RAM objectives, and discover unexpected failure modes by doing this.

FRACAS systems are one type of such tracking system (Failure Reporting and Corrective Action System).

INTERACTIONS

Nearly every component of the development of the excretory system interacts with RAM. dependencies and interactions in particular include:

Systems Engineering: As was mentioned in the part above, RAM has an effect on the excretory system.

Product Management (Life Cycle Cost and Warranty): RAM supports the excretory system lifecycle cost and warranty management organizations by assisting in the assessment of repair rates, ultrasound, and OPT costs. In order to determine the most cost-effective option, RAM may work with those organizations to estimate service agreements and conduct tradeoff analyses.

Quality Assurance: When choosing and evaluating materials, components, and subsystems, RAM may also work with the procurement and quality assurance groups.

DEPENDENCIES

Systems Safety: Safety of the ram and digestive system regarding controlling an excretory system's failure behavior, AI has many shared worries (i.e., single points of failure and failure propagation).

Software and Hardware Engineering: Through design analyses including failure modes and effects assessments, reliability forecasts, thermal analyses, reliability measurement, and component specific analyses, AI-related software and hardware reliability is able to function.

Testing: The purpose of RAM AI and the AI testing program is to create reliable excretory systems, and RAM interacts with the AI testing program during planning to determine the most effective (or viable) test events to undertake. In order to synchronize the requirements for reliability or stress tests, RAM performs interaction testing, failure/recovery testing, and stability testing.

Logistics: In order for AI logistics to predict the amount of labor, spare parts, and specialized maintenance equipment needed, RAM works with AI logistics to provide expected failure rates and downtime constraints.

MODEL

Numerous models are available that estimate and forecast reliability. For a chronic illness, models can be taken into consideration. They can be expanded to take into account how illnesses affect the longevity of a system. Such extended models can then be applied to accelerated life testing (ALT), which purposefully and methodically overstresses an excretory system in order to speed up the failure of AI tools and methodologies. The data is then extrapolated to conditions of typical use.

Degradation models, in which a feature of the excretory system is linked to the propensity of the AI approaches to fail, are also helpful. We can predict when AI approach failures will happen before they actually happen when that characteristic deteriorates.

In the early stages of development, the excretory system's AI approaches frequently fall short of their RAM requirements. The resources (especially testing time) required before an excretory system reaches maturity to achieve those goals can be estimated using reliability growth models.

Models of maintainability explain how long it takes to repair a damaged excretory system and put it back in operation. Typically, they are the result of a collection of models that each describe a particular aspect of the maintenance process (e.g., diagnosis, repair, inspection, reporting, and evacuation). These models frequently include threshold values, which are the earliest possible periods for an event to occur.

In an effort to quantify the relationship between excretory activity maintenance and the AI equipment and procedures available to assist such activities, logistic support models seek to define patients admitted due to having excretory problems. A repairable excretory system's downtime is primarily caused by queue delays. The trade space between patients admitted for having excretory problems and the availability of AI approaches for recovery can be explored using a logistical support model.

These models are all representations of reality that are, at best, approximations. They are nonetheless extremely beneficial to the extent that they offer helpful insights. To estimate a model accurately, more data are required the more complex the model is. The accuracy of a prediction decreases as extrapolation is increased.

Since high reliability AI equipment often has a lengthy lifespan and the amount of time needed to notice excretory problems may exceed test timeframes, extrapolation is frequently unavoidable. Strong assumptions must be made about the future (such as the lack of concealed failure modes), and these assumptions raise the uncertainty surrounding forecasts. Strong model assumptions frequently result in unquantified uncertainty, which poses an inherent risk to the healthcare system.

Failure mode effects analysis, reliability block diagrams, and fault trees are only a few techniques for describing the dependability of a medical system.

A graphical representation of an excretory system's failure modes is called a fault tree. It is built utilising logical gates, primarily AND, OR, NOT, and K of N gates. A partial fault tree concentrates on a particular excretory failure mode or modes of concern. Fault trees can be entire or partial. They make it possible to "dig down" and observe how a system is dependent on layered systems and other system components. Bell Labs invented fault trees in the 1960s.

A table that outlines the potential excretory failure modes for a medical system, their likelihood, and their consequences is known as an excretory Failure Mode Effects Analysis. Failure Modes and Effects of an excretory analysis rates the consequences and likelihood of AI equipment and approaches; providing for a ranking of the seriousness of excretory failure types.

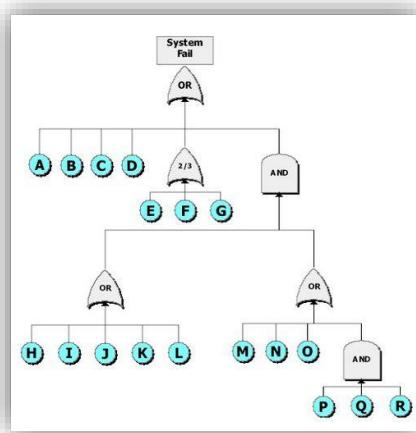


Figure 1. Fault Tree. (SEBoK Original)

A Dependability Block Diagram (RBD) is a visual portrayal of how an excretory system's procedures affect its AI reliability. It is an acyclic, directed graph. A portion of the excretory system's components are represented by each passage along the graph. The system is functional for as long as the elements along that path are in working order. In an RBD, component lives are typically taken to be autonomous. One RBD frequently functions as a component in a higher-level model since RBDs are frequently nested. These hierarchical models give the analyst the right level of detail resolution while still allowing for abstraction.

Fault trees show routes leading to failure, while RBDs show routes leading to success.

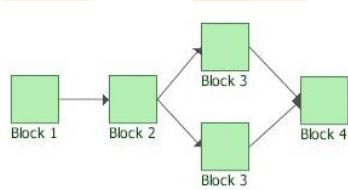


Figure 2: Simple Reliability Block Diagram (SEBoK Original)

A table that identifies potential system failure modes, their likelihood, and the failure's impacts is known as a study of failure modes and effects. A ranking of the severity of failure modes is possible with Analysis of Failure Modes, Effects, and Criticality, which ranks impacts by dividing the sum of the consequence and likelihood by their magnitude.

Even additional data are needed to properly fit system models. The phrase "garbage in, garbage out" (GIGO) is especially relevant when discussing system models.

CONCLUSION

In the end, we come to know that in today's era, artificial intelligence has a big role in the medical world. But we still can't blindly believe in artificial intelligence. Patients with medical problems such as acute excretory problem do not have enough time to stop one machine or if any equipment stops working, then we can arrange another. At the same time, hospitals may have a very big target of selecting doctors that whom to do and whom not to do. Doctors are selected according to the past records. Availability of Machinery is done as per the past record of the hospital. Everything should be so perfect that no matter how serious a patient comes, he can get immediate treatment and absolutely up to date treatment. All this perfection whether it is related to the doctor, whether it is related to providing the facility or whether it is related to the equipment, depends on the reliability of the system and the reliability depends on the reliability model.

That's why we have mentioned all the reliability models in this paper that which type of system can use which reliability model so that the system runs smoothly without any problem and without any interruption.

REFERENCES

1. **Catania L. J. (2021):** “7 - AI applications in prevalent diseases and disorders”, Foundations of Artificial Intelligence in Healthcare and Bioscience, A User Friendly Guide for IT Professionals, Healthcare Providers, Researchers, and Clinicians: 293-444.
2. **Shi J., Zhao L. X., Wang J. Y., Ye T., Wang M., Gao S., Ye F., Fu Y. (2022):** “The novel 4-hydroxyphenylpyruvate dioxygenase inhibitors in vivo and in silico approach: 3D-QSAR analysis, molecular docking, bioassay and molecular dynamics”, Arabian Journal of Chemistry, 15(7): 103919.
3. **Mubanga C., Mwape K. E., Phiri I. K., Trevisan C., Zulu G., Chabala C. Damme I., Schmidt V., Dorny P., Gabriël S. (2019):** “Progress on the development of rapid diagnostic tests for foodborne neglected zoonotic helminthiases: A systematic review”, Acta Tropica, 194: 135-147.
4. **Unione A., Burns E., Husseiny A. A. (1980):** “MSF Desalination plants. Availability, reliability and safety analysis”, Desalination, 33(1): 49-84.
5. **Etemadi S. & Khashei M. (2022):** “Accuracy versus reliability-based modelling approaches for medical decision making”, Computers in Biology and Medicine, 141: 105138.
6. **Liu S., Cheng T., Wang H. (2020):** “Effects of attention and reliability on the performance of online medical crowd funding projects: The moderating role of target amount”, Journal of Management Science and Engineering, 5(3): 162-171.
7. **Liang Y. M., Rutchakitprakarn L., Kuang S. H., Wu T. Y. (2018):** “Comparing the reliability and accuracy of clinical measurements using plaster model and the digital model system based on crowding severity”, Journal of the Chinese Medical Association, 81(9): 842-847.
8. **Basile F., Scionti R., Petracca M. (2017):** “Diagnostic reliability of osteopathic tests: A systematic review”, International Journal of Osteopathic Medicine, 25: 21-29.
9. **Altun M. & Comert S. V. (2016):** “A change-point based reliability prediction model using field return data”, Reliability Engineering & System Safety, 156: 175-184.
10. **Onofrio R., Trucco P., Torchio A. (2015):** “Towards a Taxonomy of Influencing Factors for Human Reliability Analysis (HRA) Applications in Surgery”, Procedia Manufacturing, 3:144-151.