
www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 938

Continuous Integration and automation

Sikender Mohsienuddin Mohammad

Sr. Associate, KPMG LLP, Department of Information Technology, Wilmington University

419 V street, Apt D, Sacramento, CA USA

Abstract

 Current IT strategies depend largely on the ability of companies

to push changes/features/fixes in an agile and error-free manner.

The need for automation increases dramatically as technology

advances. Waterfall software development techniques have been

replaced by agile software development approaches in the last

decades. In this shift, companies, operations, and software

developers are unquestionably relatively close to the shared goals.

To promote this merger, the industry offers a large range of open

source and proprietary solutions. Technologies have increased

themselves and thus new techniques have been developed, namely

continuous integration (CI), continuous delivery (CDE) and

permanent deployment (CD), assisted by all of the above-

mentioned open source and proprietary solution. Automation is

the primary requirement for DevOps, and DevOps's main concept

is "Automate everything." DevOps automation commences from

the coding on the developer machine until the code is run and then

the application and system are controlled in production. The

whole DevOps pipeline includes continuous integration, ongoing

testing, and continuous deployment, including live application

monitoring. The main focus of DevOps practice is the design and

configuration of automated infrastructure and software delivery.

DevOps practice depends heavily on automation, to implement for

a few hours, and to execute frequently across different platforms.

Automation in DevOps, therefore, promotes speed, greater

precision, consistent, and reliable delivery rates. In the end,

DevOps automation captures everything from design, delivery,

and supervision.

Keywords: Continuous Integration, automation, DevOps, CI

pipeline

I. INTRODUCTION

Continuous integration is a concept of coding and

practices which leads software developers to introduce minor

changes and constantly review code in version control repositories.

Since most modern systems involve the development of code on

different platforms and technologies, a process is needed to

incorporate and verify their changes [1]. Continuous integration is

a development method where developers often incorporate code

into a fully integrated system. Automated construction and

automated tests can then check any integration. Automated testing

is usually not a strict part of CI. One of the main advantages of

daily integration is that you can easily spot and identify mistakes

quickly. Since each introduced change is usually small, you can

quickly identify the particular change that has introduced a defect.

In recent times, CI has become such a standard protocol and a set

of basic elements for software development [1]. Reassessment

control, construction automation, and automatic testing are some

of the examples. Besides, constant delivery and integration have

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 939

been developed to provide best practices to ensure your app is

deployable any time or even to automatically put the core codebase

into development when new amendments are introduced. This

enables the team to move quickly while maintaining high-quality

standards that can be automatically monitored. Continuous

integration won't get rid of bugs but makes finding and deleting

them substantially easier. This essay explores the concept of

Continuous Integration and automation and how it makes changes

to the different platforms and technologies [2].

II. LITERATURE REVIEW

According to Childs et al., constant integration requires

constant testing, as the goal is to provide users with reliable

software and code. The automatic regression, output, and other

tests performed in the CI pipeline are typically implemented as

continuous testing [2]. In the first step of creativity of Agile

software development models, a major idea is to iterate

configuration changes more rapidly and decide the right direction

through experimentation – in theory, to "fail quickly" and to

optimize consistency as a basic project goal. The lack of

comprehension and failure to predict a client's changing needs

contributes to a developer's inadequate knowledge to identify

long-term program needs to adequately define long

term requirements of a project at the beginning [3].

Agile methodologies also facilitated full-time

collaboration with the production team of customer partners,

offering in-house, real-time insight on consumer preferences and

needs, to create an iterative, fail-fast workflow [5]. Agile

methodologies have generated a constant continuous cycle

between customer subject and software development teams in real-

time. Following this idea, DevOps builds on the real-time feedback

loop principle and expands it to other points within the SDLC

development process, reducing the risks of linking developers,

quality assurance (QA), operators, and developer-to-software

disconnects.

III. CONTENT

Fig i: The process of continuous integration [6].

A. The need for continuous integration

In the past, a team of developers could work

alone for a lengthy time and combine their

improvements only after the master branch has been

completed. It makes it complicated and difficult to

merge code, and it also allowed bugs to build up without

correction for a long time [6]. Such factors made it more

difficult to quickly provide customers with updates.

B. How continuous integration functions

Application developers devote to a shared

repository using a release control system like Git by

continuous integration. Before any interaction,

developers may agree to run local test scripts on their

code as an additional testing layer before integration [7].

A configuration management service automatically

constructs and performs unit tests on new code

modifications to immediately retrieve errors. The

changes made are built, tested, and equipped

automatically for retrieval with continued delivery.

Continuous deployment broadens the integration

process through the installation of all changes made to

a test environment or a production environment after

construction.

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 940

C. How does the CI require?

Many CI vendors say that all their business

needs are software and a little set -up to take these

development practices. I 've got a bridge to give you if

you think so. Most companies need the full change in

software development culture, adapting their

organization, changing workflows, automating the bulk

of their tests, and installing significant infrastructure,

or learning how to love the cloud [8]. That's not difficult,

but it 's not easy.

The technological aspects of this change are

simpler than the organizational and cultural aspects. For

example, it can involve a painful conversion process to

put your repositories on Git. However, it is hard to train

your developers not only to monitor their work several

times a day but also, before the first coding session, to

remove any conflicts immediately (when their

responsibilities lie) and to write good tests that may be

integrated into the automated handling suite [9]. For

example, it is simple to use Jenkins to initiate check -in

and to report information to developers; it is more

difficult for developers to listen to reports promptly and

halt new ones to correct old mistakes.

Fig ii: CI model [10].

D. Continuous Integration Tools

1. Jenkins Jenkins

Jenkins is one of the most common, software -based free

open source CI solutions. It is a cloud -based, Java-

written CI program that includes and running a web

server [10]. Thousands of users worldwide like to work

with Jenkins because it enables quick building and

testing of automated products.

Highlights:

a) Software locally

b) Free of charge

c) Customization of deep workflow

d) Functional and plugin-rich

e) Using OS X, Unix, and Windows packages, the

installation is fast [11].

f) Manufacturer for developers

g) A well-established and reputable company

2. TeamCity

TeamCity is a versatile business CI solution for

the first hundred configurations that can be used free of

charge. One can run parallel constructions with

TeamCity simultaneously, mark the constructions and

label those hanging. TeamCity is easy to install with a

user-friendly interface [12]. It will also support

community and professional careers.

Highlights:

a) Free up to 100 setup settings

b) Three runs with three building agents at the same

time

c) Can import source code from two different VCS

in one compilation

d) Ability to substitute testers with agents

e) Allows improvements to check without VCS

commit.

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 941

3. Bamboo

Bamboo has a quick and efficient drag and drop user

interface, dependent on a server and deploy tool from

Atlassian. This tool is popular with developers using

other tools from Atlass [13]. Bamboo enables the

creation and fusion of new branches after testing

automatically. Continuous use and distribution are

simple to achieve with this resource.

Highlights:

1) Efficient integration with other Atlassian

instruments

2) Free-to-use user interface with drag & drop

feature

3) A good method of notification

4) Easy management for company CI scaling .

5) Automation of the test utilizing elastic

substances.

6) Automatically recognizes building artifacts by

running every pipeline

4. Buddy

Buddy is a DevOps automation tool for ongoing

integration, on-going deployment, and reviews. This

tool has been developed to operate with Bitbucket and

GitHub repository code-based projects [14]. Buddy is a

business tool that has a simple, easy-to-use interface and

streamlined material design. Customer -orientated

service is supported 24/7 by live staff and can be

installed on a device in its client version.

Highlights:

a) Instinctive user interface

b) The intuitive design of the deployment flow

c) Aid for docker

d) Presets and tips available

e) Provides sophisticated automation and needs

fundamental knowledge

f) Ability to modify the code developed

g) Cloning, variable, relation and note versatile

automation [15].

5. GitLab CI

GitLab CI is open-source code and a free continuous

integration tool. GitLab API is a highly scalable device

and easy to set up and configure for GitLab -hosted

projects. Besides testing and creating projects, GitLab

CI can implement constructs. This tool identifies areas

where the development process needs to be improved.

The GitLab developers select individual GitLab CI

without giving it a second thought as seamless project

integration is automatically achieved [16].

Points to note:

a) Support Docker

b) A quick build server configuration

c) Runs on several machines simultaneously

d) Strong product integration is possible with APIs

ready for a range of features

e) A choice to protect confidential project data

6. CircleCI Circle

CircleCI is an integration that is continuous and acts

like a delivery network. This can be built locally and

used in the cloud, this supports many code languages.

This tool facilitates automated testing, construction, and

deployment [17]. The basic user interface has many

configuration options. Developers can reduce the

number of bugs with CircleCI and quickly improve app

quality. CircleCI provides a free plan for open -source

projects, although this is a commercial tool.

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 942

Most important:

a) Aid for Docker

b) Profound adaptation and fast scaling

c) Rich options of integration

d) Sophisticated interface for management

e) A reliable method of building automation

f) Allows complex workflows to be created

g) Enables many builds to run at the same time

7. TravisCI: TravisCI

TravisCI is a demonstrated CI solution that is suitable

for open-source projects. This seamless integration

platform provides a range of CI automation choices.

Since its service is hosting a cloud service, no server is

needed [18]. TravisCI is also available on-site in a

business-based version. One of the greatest things with

this tool is that every time one runs a new one, it

supports the latest build.

Most important:

a) Help for many languages and channels

b) Maintenance and statistics of automated

deployment

c) Access management for enterprise -grade

d) Optimization Effortless GitHub

e) Study parallel

f) Scaling of demand capacity

g) Support of flow and pull requests for branches

D. CI implementation

When a company practices CI, all of its work is regularly

integrated into the main code model (recognized as the trunk,

master, or mainline). Research from DevOps Research and

Evaluation (DORA) has shown that companies qualify better at

least every day when developers fuse their work with the trunk. A

series of automated checks are conducted before the actual merger

to verify the regression bugs do not occur [20]. If these software

products fail, the team usually stops to correct the errors.

All downstream processes should use the packages created by

the CI build. These constructions should be numerical and

reproducible. At least once a day, you should successfully run your

construction process. Automatic testing suite. Start by writing

many tests covering the high-quality functionality of your system,

if you don't have one. Ensure the check is trustworthy. Users know,

that's how when they crash, and when they pass, one must be sure

that there are no significant device problems. After this, they make

sure all new features are tested. These tests are to be conducted

fast to feedback from developers as fast as possible [21]. At least

once a day, tests should be successful. In the end, developers will

get input from them every day if they have success and acceptance

checks. A CI system that performs building an automated check-

in test. The system must also visualize the status of the team. Users

can enjoy it — and can use horns or stop signs to suggest when the

building is broken, for example. Use no email notices; many

people ignore email notifications or create a filter hiding notice.

Chat system notifications are a better and more popular way to

achieve this. Continuous integration, as described by the Kent

Beck group and the extreme programming group, often includes

two additional activities that also predict the higher performance

of software:

Style of construction focused on the trunk in which developers

build small lots on trunk/master combine their tasks into a specific

trunk/master at least every day, not on long-lasting branches of

apps. An understanding that it will postpone all other jobs when

construction ends. Automated unit testing is required for CI. These

tests should be sufficiently comprehensive to ensure that the

software functions properly [22]. The tests also have to take a

couple of minutes or less. If automated unit testing lasts longer,

developers do not want to run it often. If tests are running

uncommonly, the results of many different changes might be a test

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 943

failure, which makes debugging difficult. Tests that are rarely done

are difficult to maintain.

It is intricate to create maintainable unit test suites. A good

solution to this issue is to practice test-driven development (TDD)

in which developers are initially failing automatic tests before

implementing the test code. TDD provides many advantages: One

is that it means that developers write flexible, test-friendly code

that reduces the maintenance costs of automated test suites as a

result [23]. Many companies do not have maintainable unit test

suites and still do not practice TDD, despite this.

E. Objections to CI

CI is often considered a contentious activity, as previously

mentioned. CI demands that the developers break up large

functions and other modifications into smaller, often integrated

incremental changes. This is an improvement for developers who

don't have this way of working [23]. Furthermore, it can take

longer for teams to transition to small process to complete bigger

features. Even so, the frequency over which developers can define

a large feature to be completed on a branch is not optimized. One

would want to be able to evaluate, incorporate, check, and execute

improvements as soon as possible. The effect of this phase is the

quicker and more reliable software creation and distribution when

changes are small and self-contained. Working in small groups

often means that software staff receives daily input from other

developers, reviewers, consumers, and automated performance

and safety checks on the effect of their work in the system as a

whole. In turn, it makes detecting, sorting, and resolving problems

easier and faster [24]. Notwithstanding these objections, it should

be the number one priority for any organization wishing to begin

the journey to continuous integration to assist software

development teams.

F. Common flaws

The following are some common limitations preventing broad

adoption of CI:

One should not put everything in the repository code. All the

applications and the system that are required to build and

customize should be in the repository. This may seem beyond the

scope of CI, but it is an ideal foundation. The building method is

not automated. Manual steps build error opportunities and

undocumented steps. Not timely checking for all modifications.

Full end-to-end testing is necessary; however, fast tests are also

essential (usually unit tests) for quick feedback [25]. Not

immediately fix broken builds. One key aim of CI is that everyone

can build a stable building. If the construction cannot be fixed in a

few minutes, it should be identified and reversed the change that

triggered the build to break down. It takes too long for tests to take

place. According to DORA research, the experiments will not take

longer than a few minutes to run with a maximum duration of

around 10 minutes. If the construction takes longer than that, you

can increase the testing performance, add additional machine

resources to run them in parallel, or split longer running tests into

a separate construction using the deployment pipeline model [25].

Not often enough fusion into a trunk. Many companies have

automated tests and constructions, but they do not perform a daily

trunk fusion. This results in long-term branches which are much

more difficult to integrate and lengthy feedback loops for

developers.

IV. CONCLUSION

CI guarantees the software is continuously running and the

divisions of developers are not substantially different from the

trunk. Studies show that CI has a greater deployment rate, more

reliable systems, and better-quality applications. The benefit of CI

is significant. The main aspects of continuous integration

effectively should involve an engagement that stimulates a

software build. A sequence of test automation should be activated

in a few minutes for each commit. One needs the following to

incorporate these elements:

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

IJCRT1133440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 944

An automated process of construction. The initial phase in CI is to

provide an automated script that creates packages for any

environment. The latest research supports this claim by helping to

emphasize the links between software creation, design, and

implementation. Continuous integration in software development

projects helps to prevent disconnections and mitigate risk.

REFERENCES

[1] Schaefer, A., Reichenbach, M., and Fey, D., 2012, "Continuous Integration

and Automation for DevOps", Lecture Notes in Electrical Engineering, pp.

345-358.

[2] Childs, H., Brugger,E.S, Bonnell,K.S., Meredith,J.S., Miller,M.,

Whitlock,B.J., Max,N.,2005, “A contract-based system for large data

visualization. In: Proceedings of IEEE Visualization, pp 190–198.

[3] Berg, A. M., 2015, “Jenkins continuous integration cookbook: Over 90

recipes to produce great results from Jenkins using pro-level practices,

techniques, and solutions,” Birmingham, UK: Packt Publishing.

[4] Cois, A.,2015, "Continuous Integration in DevOps",

Insights.sei.cmu.edu.Available at:

https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-

devops-1.html: 16- Jul- 2020].

[5] Elbaum, S., Rothermel, G., and Penix, J.,2014, “Techniques for improving

regression testing in continuous integration development environments. In

FSE.

[6] Hüttermann, M.,2012, “DevOps for developers,” Berkeley, CA: Apress.

[7] Duvall, P. M. (2010). Continuous integration: Patterns and anti-patterns.

Durham, NC: DZone, Inc.

[8] Hunt A, and Thomas, D., 1999, “The pragmatic programmer: from

journeyman to master,” Addison-Wesley, Boston.

[9] Kawalerowicz, M., and Berntson, C., 2011, “Continuous Integration in .NET:

Includes index,” Greenwich, Conn: Manning.

[10] Bosch, J., 2014, Continuous software engineering, Cham: Springer.

[11] Smart, J. F., 2011, “Jenkins: The definitive guide,” Sebastopol, CA: O'Reilly

Media.

[12] Melymuka, V., 2012, “TeamCity 7 continuous integration essentials,”

Birmingham: Packt Publishing.

[13] Brechner, E., and Waletzky, J.,2015). Agile project management with

Kanban. Redmond, WA: Microsoft Press.

[14] Vanbrabant, B., and Delaet, T., 2010, “Authorizing and directing

configuration updates in contemporary its infrastructures. In: Proceedings of

the 3rd ACM workshop on assurable and usable security configuration,

SafeConfig ’10, New York, NY, USA, ACM, pp 79–82.

[15] Reichenbach, M., Schmidt, M., Pfundt, B., and Fey, D., 2011, “A new virtual

hardware laboratory for remote FPGA experiments on real hardware. In:

Proceedings of the 2011 international conference on e-Learning, e-Business,

enterprise information systems, e-Government, EEE ’11.

[16] Lasserre, J.,2009, “Linear and Integer Programming Vs. Linear Integration

and Counting: A Duality Viewpoint,” Dordrecht: Springer. Internet resource.

[17] Gruver, G., Young, M., and Fulghum, P., 2013, “A practical approach to

large-scale Agile development: How HP transformed LaserJet FutureSmart

Firmware, “Upper Saddle River, NJ: Addison-Wesley.

[18] Eckstein, J., & O'Reilly for Higher Education (Firm). (2013). Agile

Software Development in the Large: Diving Into the Deep. Addison-Wesley

Professional.

[19] Sacks, M. (2012). Pro website development and operations: Streamlining

DevOps for large-scale websites. New York: Apress.

[20] Taiko, P. F., 2009, “Designing software-intensive systems: Methods and

principles, Hershey: Information Science Reference.

[21] Sacks, M., 2012, “Pro website development and operations: Streamlining

DevOps for large-scale websites,” New York: Apress.

[22] Allspaw, J., and Robbins, J.,2010, "Web operations," Beijing [China:

O'Reilly.

[23] Bergmann, S., 2011), Integrating PHP projects with Jenkins. Sebastopol,

Calif: O'Reilly.

[24] Humble, J., & Farley, D. (2011). Continuous delivery.

Upper Saddle River, NJ: Addison-Wesley.

[25] Kroll, P., & Kruchten, P. (2003). The rational unified process made easy: A

practitioner's guide to the RUP. Boston: Addison-Wesley.

[26] Brown, E., 2014, “Web development with Node and Express, "Sebastopol,

CA: O'Reilly Media.

http://www.ijcrt.org/

