www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

dh

IJCRT.ORG ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (1JCRT)

@a/ An International Open Access, Peer-reviewed, Refereed Journal

Continuous Integration and automation

Sikender Mohsienuddin Mohammad

Sr. Associate, KPMG LLP, Department of Information Technology, Wilmington University
419V street, Apt D, Sacramento, CA USA

Abstract

Current IT strategies depend largely on the ability of companies
to push changes/features/fixes in an agile and error-free manner.
The need for automation increases dramatically as technology
advances. Waterfall software development techniques have been
replaced by agile software development approaches in the last
decades. In this shift, companies, operations, and software
developers are unquestionably relatively close to the shared goals.
To promote this merger, the industry offers a large range of open
source and proprietary solutions. Technologies have increased
themselves and thus new techniques have been developed, namely
continuous integration (Cl), continuous delivery (CDE) and
permanent deployment (CD), assisted by all of the above-
mentioned open source and proprietary solution. Automation is
the primary requirement for DevOps, and DevOps's main concept
is "Automate everything." DevOps automation commences from
the coding on the developer machine until the code is run and then
the application and system are controlled in production. The
whole DevOps pipeline includes continuous integration, ongoing
testing, and continuous deployment, including live application
monitoring. The main focus of DevOps practice is the design and
configuration of automated infrastructure and software delivery.
DevOps practice depends heavily on automation, to implement for

a few hours, and to execute frequently across different platforms.

Automation in DevOps, therefore, promotes speed, greater
precision, consistent, and reliable delivery rates. In the end,
DevOps automation captures everything from design, delivery,
and supervision.
Keywords: Continuous Integration, automation, DevOps, CI
pipeline
l. INTRODUCTION

Continuous integration is a concept of coding and
practices which leads software developers to introduce minor
changes and constantly review code in version control repositories.
Since most. modern systems involve the development of code on
different platforms and technologies, a process is needed to
incorporate and verify their changes [1]. Continuous integration is
a development method where developers often incorporate code
into a fully integrated system. Automated construction and
automated tests can then check any integration. Automated testing
is usually not a strict part of Cl. One of the main advantages of
daily integration is that you can easily spot and identify mistakes
quickly. Since each introduced change is usually small, you can
quickly identify the particular change that has introduced a defect.
In recent times, ClI has become such a standard protocol and a set
of basic elements for software development [1]. Reassessment
control, construction automation, and automatic testing are some

of the examples. Besides, constant delivery and integration have

IJCRT1133440 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 938

http://www.ijcrt.org/

www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

been developed to provide best practices to ensure your app is
deployable any time or even to automatically put the core codebase
into development when new amendments are introduced. This
enables the team to move quickly while maintaining high-quality
standards that can be automatically monitored. Continuous
integration won't get rid of bugs but makes finding and deleting
them substantially easier. This essay explores the concept of
Continuous Integration and automation and how it makes changes
to the different platforms and technologies [2].
1. LITERATURE REVIEW

According to Childs et al., constant integration requires
constant testing, as the goal is to provide users with reliable
software and code. The automatic regression, output, and other
tests performed in the CI pipeline are typically implemented as
continuous testing [2]. In the first step of creativity of Agile
software development models, a major idea is to iterate
configuration changes more rapidly and decide the right direction
through experimentation — in theory, to "fail quickly" and to
optimize consistency as a basic project goal. The lack of
comprehension and failure to predict a client's changing needs
contributes to a developer's inadequate knowledge to identify
long-term program needs to adequately define long
term requirements of a project at the beginning [3].

Agile methodologies also facilitated full-time
collaboration with the production team of customer partners,
offering in-house, real-time insight on consumer preferences and
needs, to create an iterative, fail-fast workflow [5]. Agile
methodologies have generated a constant continuous cycle
between customer subject and software development teams in real-
time. Following this idea, DevOps builds on the real-time feedback
loop principle and expands it to other points within the SDLC
development process, reducing the risks of linking developers,

quality assurance (QA), operators, and developer-to-software

disconnects.

Il CONTENT
1
i1
‘/\' vAv AA.
M AN \ A
"u‘ "l . 3 /)
v vV V v
e 2 e

Fig i: The process of continuous integration [6].

A. The need for continuous integration

In the past, a team of developers could work

alone for a lengthy time and combine their
improvements only after the master branch has been
completed. It makes it complicated and difficult to
merge code, and it also allowed bugs to build up without
correction for a long time [6]. Such factors made it more
difficult to quickly provide customers with updates.
B. How continuous integration functions

Application developers ‘devote to a shared
repository using-a release control system like Git by
continuous integration. Before any interaction,
developers may agree to run local test scripts on their
code as an additional testing layer before integration [7].
A configuration management service automatically
constructs and performs unit tests on new code
modifications to immediately retrieve errors. The
changes made are built, tested, and equipped
automatically for retrieval with continued delivery.
Continuous deployment broadens the integration
process through the installation of all changes made to
a test environment or a production environment after

construction.

IJCRT1133440

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 939

http://www.ijcrt.org/

www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

C. How does the Cl require?

Many CI vendors say that all their business
needs are software and a little set-up to take these
development practices. I've got a bridge to give you if
you think so. Most companies need the full change in
software development culture, adapting their
organization, changing workflows, automating the bulk
of their tests, and installing significant infrastructure,
or learning how to love the cloud [8]. That's not difficult,
but it's not easy.

The technological aspects of this change are
simpler than the organizational and cultural aspects. For
example, it can involve a painful conversion process to
put your repositories on Git. However, it is hard to train
your developers not only to monitor their work several
times a day but also, before the first coding session, to
remove any conflicts immediately (when their
responsibilities lie) and to write good tests that may be
integrated into the automated handling suite [9]. For
example, it is simple to use Jenkins to initiate check-in
and to report information to developers; it is more
difficult for developers to listen to reports promptly and
mistakes.

halt new ones to correct old

a&
Makrtatrer
e Devwrsser

B

Fig ii: ClI model [10].

D. Continuous Integration Tools

1. Jenkins Jenkins
Jenkins is one of the most common, software-based free
open source CIl solutions. It is a cloud-based, Java-
written Cl program that includes and running a web
server [10]. Thousands of users worldwide like to work
with Jenkins because it enables quick building and
testing of automated products.
Highlights:

a) Software locally

b) Free of charge

c) Customization of deep workflow

d) Functional and plugin-rich

e) Using OS X, Unix, and Windows packages, the

installation is fast [11].
f) Manufacturer for developers

g) A well-established and reputable company

2. TeamCity
TeamCity is a versatile business Cl solution for
the first hundred configurations that can be used free of
charge. One can. run parallel constructions with
TeamCity simultaneously, mark the constructions and
label those hanging. TeamCity is easy to install with a
user-friendly interface [12]. It will also support
community and professional careers.
Highlights:
a) Free up to 100 setup settings
b) Three runs with three building agents at the same
time
c) Can import source code from two different VCS
in one compilation
d) Ability to substitute testers with agents
e) Allows improvements to check without VCS

commit.

IJCRT1133440

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 940

http://www.ijcrt.org/

www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

3. Bamboo
Bamboo has a quick and efficient drag and drop user
interface, dependent on a server and deploy tool from
Atlassian. This tool is popular with developers using
other tools from Atlass [13]. Bamboo enables the
creation and fusion of new branches after testing
automatically. Continuous use and distribution are
simple to achieve with this resource.
Highlights:
1) Efficient integration with other Atlassian
instruments
2) Free-to-use user interface with drag & drop
feature
3) A good method of notification
4) Easy management for company CI scaling.
5) Automation of the test utilizing elastic
substances.

6) Automatically recognizes building artifacts by

running every pipeline

4. Buddy
Buddy is a DevOps automation tool for ongoing
integration, on-going deployment, and reviews. This
tool has been developed to operate with Bitbucket and
GitHub repository code-based projects [14]. Buddy is a
business tool that has a simple, easy-to-use interface and
streamlined material design. Customer-orientated
service is supported 24/7 by live staff and can be
installed on a device in its client version.
Highlights:

a) Instinctive user interface

b) The intuitive design of the deployment flow

c) Aid for docker

d) Presets and tips available

e) Provides sophisticated automation and needs
fundamental knowledge

f) Ability to modify the code developed

g) Cloning, variable, relation and note versatile

automation [15].

5. GitLab ClI
GitLab CI is open-source code and a free continuous
integration tool. GitLab API is a highly scalable device
and easy to set up and configure for GitLab-hosted
projects. Besides testing and creating projects, GitLab
Cl can implement constructs. This tool identifies areas
where the development process needs to be improved.
The GitLab developers select individual GitLab CI
without giving it a second thought as seamless project
integration is automatically achieved [16].
Points to note:

a) Support Docker

b) A quick build server configuration

c) Runs on several machines'simultaneously

d) Strong product integration is possible with APIs

ready for.a range of features

e) A choice to protect confidential project data

6. CircleCl Circle

CircleCl is an integration that is continuous and acts
like a delivery network. This can be built locally and
used in the cloud, this supports many code languages.
This tool facilitates automated testing, construction, and
deployment [17]. The basic user interface has many
configuration options. Developers can reduce the
number of bugs with CircleCl and quickly improve app
quality. CircleCIl provides a free plan for open-source

projects, although this is a commercial tool.

[JCRT1133440] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 941

http://www.ijcrt.org/

www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

Most important:
a) Aid for Docker
b) Profound adaptation and fast scaling
c) Rich options of integration
d) Sophisticated interface for management
e) A reliable method of building automation
f) Allows complex workflows to be created

g) Enables many builds to run at the same time

7. TravisCl: TravisClI
TravisCl is a demonstrated CI solution that is suitable
for open-source projects. This seamless integration
platform provides a range of CIl automation choices.
Since its service is hosting a cloud service, no server is
needed [18]. TravisCl is also available on-site in a
business-based version. One of the greatest things with
this tool is that every time one runs a new one, it
supports the latest build.
Most important:

a) Help for many languages and channels

b) Maintenance and statistics of automated

deployment

c) Access management for enterprise-grade

d) Optimization Effortless GitHub

e) Study parallel

f) Scaling of demand capacity

g) Support of flow and pull requests for branches

D. ClI implementation

When a company practices Cl, all of its work is regularly
integrated into the main code model (recognized as the trunk,
master, or mainline). Research from DevOps Research and
Evaluation (DORA) has shown that companies qualify better at

least every day when developers fuse their work with the trunk. A

series of automated checks are conducted before the actual merger

to verify the regression bugs do not occur [20]. If these software
products fail, the team usually stops to correct the errors.

All downstream processes should use the packages created by
the CI build. These constructions should be numerical and
reproducible. At least once a day, you should successfully run your
construction process. Automatic testing suite. Start by writing
many tests covering the high-quality functionality of your system,
if you don't have one. Ensure the check is trustworthy. Users know,
that's how when they crash, and when they pass, one must be sure
that there are no significant device problems. After this, they make
sure all new features are tested. These tests are to be conducted
fast to feedback from developers as fast as possible [21]. At least
once a day, tests should be successful. In the end, developers will
get input from them every day if they have success and acceptance
checks. A CI system that performs building an automated check-
in test. The system must also visualize the status of the team. Users
can enjoy it — and can use horns or stop signs to suggest when the
building is broken, for example. Use no email notices; many
people ignore email notifications or create a filter hiding notice.
Chat system notifications are a better and more popular way to
achieve this. Continuous integration, as described by the Kent
Beck group and the extreme programming group, often includes
two additional activities that also predict the higher performance
of software:

Style of construction focused on the trunk in which developers
build small lots on trunk/master combine their tasks into a specific
trunk/master at least every day, not on long-lasting branches of
apps. An understanding that it will postpone all other jobs when
construction ends. Automated unit testing is required for CI. These
tests should be sufficiently comprehensive to ensure that the
software functions properly [22]. The tests also have to take a
couple of minutes or less. If automated unit testing lasts longer,
developers do not want to run it often. If tests are running

uncommonly, the results of many different changes might be a test

[JCRT1133440] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 942

http://www.ijcrt.org/

www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

failure, which makes debugging difficult. Tests that are rarely done
are difficult to maintain.

It is intricate to create maintainable unit test suites. A good
solution to this issue is to practice test-driven development (TDD)
in which developers are initially failing automatic tests before
implementing the test code. TDD provides many advantages: One
is that it means that developers write flexible, test-friendly code
that reduces the maintenance costs of automated test suites as a
result [23]. Many companies do not have maintainable unit test
suites and still do not practice TDD, despite this.

E. Objectionsto CI

Cl is often considered a contentious activity, as previously
mentioned. Cl demands that the developers break up large
functions and other modifications into smaller, often integrated
incremental changes. This is an improvement for developers who
don't have this way of working [23]. Furthermore, it can take
longer for teams to transition to small process to complete bigger
features. Even so, the frequency over which developers can define
a large feature to be completed on a branch is not optimized. One
would want to be able to evaluate, incorporate, check, and execute
improvements as soon as possible. The effect of this phase is the
quicker and more reliable software creation and distribution when
changes are small and self-contained. Working in small groups
often means that software staff receives daily input from other
developers, reviewers, consumers, and automated performance
and safety checks on the effect of their work in the system as a
whole. In turn, it makes detecting, sorting, and resolving problems
easier and faster [24]. Notwithstanding these objections, it should
be the number one priority for any organization wishing to begin
the journey to continuous integration to assist software
development teams.

F. Common flaws
The following are some common limitations preventing broad

adoption of ClI:

One should not put everything in the repository code. All the
applications and the system that are required to build and
customize should be in the repository. This may seem beyond the
scope of ClI, but it is an ideal foundation. The building method is
not automated. Manual steps build error opportunities and
undocumented steps. Not timely checking for all modifications.
Full end-to-end testing is necessary; however, fast tests are also
essential (usually unit tests) for quick feedback [25]. Not
immediately fix broken builds. One key aim of CI is that everyone
can build a stable building. If the construction cannot be fixed in a
few minutes, it should be identified and reversed the change that
triggered the build to break down. It takes too long for tests to take
place. According to DORA research, the experiments will not take
longer than a few minutes to run with a maximum duration of
around 10 minutes. If the construction takes longer than that, you
can increase the testing performance, add additional machine
resources to run them in parallel, or split longer running tests into
a separate construction using the deployment pipeline model [25].
Not often enough fusion into a trunk.-Many companies have
automated tests and constructions, but they do not perform a daily
trunk fusion. This results in long-term branches which are much
more difficult to integrate and lengthy feedback loops for
developers.

IV. CONCLUSION

Cl guarantees the software is continuously running and the
divisions of developers are not substantially different from the
trunk. Studies show that CI has a greater deployment rate, more
reliable systems, and better-quality applications. The benefit of CI
is significant. The main aspects of continuous integration
effectively should involve an engagement that stimulates a
software build. A sequence of test automation should be activated
in a few minutes for each commit. One needs the following to

incorporate these elements:

IJCRT1133440

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 943

http://www.ijcrt.org/

www.ijcrt.org

© 2016 IJCRT | Volume 4, Issue 3 July 2016 | ISSN: 2320-2882

An automated process of construction. The initial phase in Cl is to

provide an automated script that creates packages for any

environment. The latest research supports this claim by helping to

emphasize the links between software creation, design, and

implementation. Continuous integration in software development

projects helps to prevent disconnections and mitigate risk.

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Schaefer, A., Reichenbach, M., and Fey, D., 2012, "Continuous Integration
and Automation for DevOps", Lecture Notes in Electrical Engineering, pp.
345-358.
Childs, H., Brugger,E.S, BonnelllK.S., MeredithJ.S., Miller,M.,
Whitlock,B.J., Max,N.,2005, “A contract-based system for large data
visualization. In: Proceedings of IEEE Visualization, pp 190-198.

Berg, A. M., 2015, “Jenkins continuous integration cookbook: Over 90
recipes to produce great results from Jenkins using pro-level practices,
techniques, and solutions,” Birmingham, UK: Packt Publishing.

Cois, A.,2015, "Continuous Integration in DevOps",
Insights.sei.cmu.edu.Available at:
https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-
devops-1.html: 16- Jul- 2020].

Elbaum, S., Rothermel, G., and Penix, J.,2014, “Techniques for improving
regression testing in continuous integration development environments. In
FSE.

Hittermann, M.,2012, “DevOps for developers,” Berkeley, CA: Apress.
Duvall, P. M. (2010). Continuous integration: Patterns and anti-patterns.
Durham, NC: DZone, Inc.

Hunt A, and Thomas, D., 1999, “The pragmatic programmer: from

journeyman to master,” Addison-Wesley, Boston.

Kawalerowicz, M., and Berntson, C., 2011, “Continuous Integration in .NET:

Includes index,” Greenwich, Conn: Manning.

Bosch, J., 2014, Continuous software engineering, Cham: Springer.

Smart, J. F., 2011, “Jenkins: The definitive guide,” Sebastopol, CA: O'Reilly
Media.

Melymuka, V., 2012, “TeamCity 7 continuous integration essentials,”
Birmingham: Packt Publishing.

Brechner, E., and Waletzky, J.,2015). Agile project management with
Kanban. Redmond, WA: Microsoft Press.

Vanbrabant, B., and Delaet, T., 2010, “Authorizing and directing
configuration updates in contemporary its infrastructures. In: Proceedings of
the 3rd ACM workshop on assurable and usable security configuration,

SafeConfig *10, New York, NY, USA, ACM, pp 79-82.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Reichenbach, M., Schmidt, M., Pfundt, B., and Fey, D., 2011, “A new virtual
hardware laboratory for remote FPGA experiments on real hardware. In:
Proceedings of the 2011 international conference on e-Learning, e-Business,
enterprise information systems, e-Government, EEE "11.

Lasserre, J.,2009, “Linear and Integer Programming Vs. Linear Integration
and Counting: A Duality Viewpoint,” Dordrecht: Springer. Internet resource.
Gruver, G., Young, M., and Fulghum, P., 2013, “A practical approach to
large-scale Agile development: How HP transformed LaserJet FutureSmart
Firmware, “Upper Saddle River, NJ: Addison-Wesley.

Eckstein, J., & O'Reilly for Higher Education (Firm). (2013). Agile
Software Development in the Large: Diving Into the Deep. Addison-Wesley
Professional.

Sacks, M. (2012). Pro website development and operations: Streamlining
DevOps for large-scale websites. New York: Apress.

Taiko, P. F., 2009, “Designing software-intensive systems: Methods and
principles, Hershey: Information Science Reference.

Sacks, M., 2012, “Pro website development and operations: Streamlining
DevOps for large-scale websites,” New York: Apress.

Allspaw, J., and Robbins, J.,2010, "Web operations," Beijing [China:
O'Reilly.

Bergmann, S., 2011), Integrating PHP projects with Jenkins. Sebastopol,
Calif: O'Reilly.

Humble, J., & Farley, D. (2011). Continuous delivery.
Upper Saddle River, NJ: Addison-Wesley.

Kroll, P., & Kruchten, P. (2003). The rational unified process made easy: A
practitioner's guide to the RUP. Boston: Addison-Wesley.

Brown, E., 2014, “Web development with Node and Express, "Sebastopol,

CA: O'Reilly Media.

IJCRT1133440

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| 944

http://www.ijcrt.org/

